• 제목/요약/키워드: sinter

검색결과 165건 처리시간 0.026초

Bonding Temperature Effects of Robust Ag Sinter Joints in Air without Pressure within 10 Minutes for Use in Power Module Packaging

  • Kim, Dongjin;Kim, Seoah;Kim, Min-Su
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.41-47
    • /
    • 2022
  • Ag sintering technologies have received great attention as it was applied to the inverter of Tesla's electric vehicle Model III. Ag sinter bonding technology has advantages in heat dissipation design as well as high-temperature stability due to the intrinsic properties of the material, so it is useful for practical use of SiC and GaN devices. This study was carried out to understand the sinter joining temperature effect on the robust Ag sintered joints in air without pressure within 10 min. Electroplated Ag finished Cu dies (3 mm × 3 mm × 2 mm) and substrates (10 mm × 10 mm × 2 mm) were introduced, respectively, and nano Ag paste was applied as a bonding material. The sinter joining process was performed without pressure in air with the bonding temperature as a variable of 175 ℃, 200 ℃, 225 ℃, and 250 ℃. As results, the bonding temperature of 175 ℃ caused 13.21 MPa of die shear strength, and when the bonding temperature was raised to 200 ℃, the bonding strength increased by 157% to 33.99 MPa. When the bonding temperature was increased to 225 ℃, the bonding strength of 46.54 MPa increased by about 37% compared to that of 200 ℃, and even at a bonding temperature of 250 ℃, the bonding strength exceeded 50 MPa. The bonding strength of Ag sinter joints was directly influenced by changes in the necking thickness and interfacial connection ratio. In addition, developments in the morphologies of the joint interface and porous structure have a significant effect on displacement. This study is systematically discussed on the relationship between processing temperatures and bonding strength of Ag sinter joints.

구리-크롬 소결단조 합금의 크롬 함유량 변화에 따른 동적 물성특성 (Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content)

  • 송정한;허훈
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.670-677
    • /
    • 2006
  • Vacuum interrupters are used in various switch-gear components such as circuit breakers, distribution switches, contactors. The electrodes of a vacuum interrupter are manufactured of sinter-forged Cu-Cr material for good electrical and mechanical characteristics. Since the closing velocity is 1-2m/s and impact deformation of the electrode depends on the strain-rate at the given velocity, the dynamic material property of the sinter-forged Cu-Cr alloy is important to design the vacuum interrupter reliably and to identify the impact characteristics of a vacuum interrupter accurately. This paper is concerned with the dynamic material properties of sinter-forged Cu-Cr alloy for various strain rates. The amount of chrome is varied from 10 wt% to 30 wt% in order to investigate the influence of the chrome content on the dynamic material property. The high speed tensile test machine is utilized in order to identify the dynamic property of the Cu-Cr alloy at the intermediate strain-rate and the split Hopkinson pressure bar is used at the high strain-rate. Experimental results from both the quasi-static and the high strain-rate up to the 5000/sec are interpolated with respect to the amount of chrome in order to construct the Johnson-Cook and the modified Johnson-Cook model as the constitutive relation that should be applied to numerical simulation of the impact behavior of electrodes.

지르코니아 분말 성형체의 고온 치밀화 거동과 결정립 성장 (Densification behavior and grain growth of zirconia powder compacts at high temperature)

  • 김홍기;김기태
    • 대한기계학회논문집A
    • /
    • 제21권8호
    • /
    • pp.1175-1187
    • /
    • 1997
  • Densification behavior and grain growth of zirconia powder compacts are investigated under high temperature. Experimental data are obtained for zirconia powder under pressureless sintering, sinter forging and hot isostatic pressing. The constitutive equations by Kwon et al. are used for diffusional creep and grain growth. The constitutive equations by McMeeking and co-workers are also included to study the effect of power-law creep. These constitutive equations are implemented into a finite element program (ABAQUS) to investigate the friction effect during sinter forging and the canning effect during hot isostatic pressing. The agreements between experimental data and finite element results are very good in pressureless sintering and hot isostatic pressing, but not as good in sinter forging.

공구강 분말 성형체의 고온 치밀화 성형공정 (High Temperature Densification Forming Process of Tool Steel Powder Compact)

  • 최학현;전윤철;김기태
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2182-2195
    • /
    • 1996
  • Densification characteristics and behavior of tool steel powder compact during high temperature forming processes were investigated under pressure less sintering, sinter forging and hot isostastic pressing. In pressureless sintering, full density was obtained at a closely controlled temperature near the solidus of the material. Finite element calculations from constitutive model for densification by power law creep and diffusional flow were compared with experimental data. Agreements between theoretical calculations and experimental data were good in hot isostatic pressing but not as good in sinter forging.

나노 세라믹 분말의 고온 치밀화와 결정립 성장의 해석 (Analysis for Densification Behavior and Grain Growth of Nanocrystalline Ceramic Powder under High Temperature)

  • 김홍기;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.363-368
    • /
    • 2000
  • Densification, grain growth, and phase transformation of nanocrystalline ceramic powder were investigated under pressureless sintering, sinter forging, and hot pressing. A constitutive model for densification of nanocrystalline ceramic powder was proposed and implemented into a finite element program (ABAQUS). A grain growth model was also proposed by including the effect of applied stress on grain growth when phase transformation occurs. Finite element results by using the proposed models well predicted densification behavior, deformation, and grain growth of nanocrystalline titania powder during pressureless sintering, sinter forging, and hot pressing.

  • PDF

Circulating Mechanism of the Oil in Brief Operating for the Oil-impregnated Sintered Bearing

  • Harakawa, Toshiro;Maruyama, Tsuneo;Shimizu, Teruo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1006-1007
    • /
    • 2006
  • The oil-impregnated sintered bearings are used for various aplecations and, wide usages without refueling. The oil circulating mechanism operates smoothly the behavior of oil If doing at the time of passing and becoming a stationary state, and there is little thing where trouble is caused. On the other hand, the trouble of such as starting noise might be caused in the unstationary state that repeats operation for a short time. To study the behavior of oil of each parameter, we execute the numerical simulation and various verification experiments. As a result, we developed that the bearings were able to be used enough for various brief operating time in the unstationary state. Finally we have expanded the usage of the oil-impregnated sintered bearings by adding the consideration of the behavior of oil.

  • PDF

Innovative Materials and Production Techniques for Sinterforged PM Aluminium Components with Improved Performance

  • Neubing, Hans-Claus;Ichikawa, Junichi;Gradl, Johann
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.710-711
    • /
    • 2006
  • High strength PM aluminium alloys Al-Zn-Mg-Cu (7075 type) were studied by using commercially available powder blends and the sinter-forging technique for component production. Principal areas of focus include the response to PM processing, micro structural assessment and material properties of Aluminium sinter forged products. Green preforms are successfully sintered to near full density by solid-supersolidus liquid phase sintering. Sinter forging method can produce components with net shape and mechanical characteristics of the material have improved greatly. Properties of this new PM Al-alloy were found to be reproducible in an industrial production environment.

  • PDF

알루미나의 비정상 입자성장에 미치는 압력의 영향 (The Effect of Pressure on the Abnormal Grain Growth in Alumina)

  • 박훈;박상엽
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.617-624
    • /
    • 2000
  • Abnormal grain growth in alumina was investigated during sinter-HIP process for better understanding of pressure effect on microstructural development. Abnormal grain growth of monolithic alumina was observed near surface region rather than interior region of specimen. Finite element analysis was used to estimate the pressure distribution developed in the specimen. Pressure distribution analysis was in good agreement with grain size distributjion in the specimen. The results of finite element analysis provided that abnormal grain growth monolithic alumina was resulted from the inhomogeneous pressure distribution in the specimen. MgO addition in alumina was effective for the suppression of abnormal grain growth in alumina under inhomogeneous pressure distribution during sinter-HIP process.

  • PDF

Sinter-bonding of Iron Based Compacts Containing P and Cu

  • Pieczonka, Tadeusz;Kazior, Jan
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.306-307
    • /
    • 2006
  • The sinter-bonding behavior of iron based powder mixtures was investigated. To produce the green compacts to be joined the following powders based on $H{\ddot{o}}gan{\ddot{a}}s$ AB grade NC 100.24 plain iron powder were used: NC 100.24 as delivered, PNC 30, PNC 60 and NC 100.24 + 4%Cu powder mixtures. Dimensional behaviour of all those materials during the sintering cycle was monitored by dilatometry. Simple ring shaped specimens as the outer parts and cylindrical as the inner parts were pressed. The influence of parts' composition on joining strength was established. Diffusion of alloying elements: copper and phosphorous, across the bonding surface was controlled by metallography, SEM and microanalysis.

  • PDF

Enhanced Properties of Extra-fine Nickel Steels for PM Gears

  • Stephenson, Thomas F.;Korotkin, Maria;Metcalfe, Shawn
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.393-394
    • /
    • 2006
  • Highly compressible Ni-Mo steels are attractive materials for PM due to high sinter density and ease of processing. Extra-fine Ni admixed PM steels have demonstrated improved mechanical properties and rolling contact fatigue resistance due to a more uniform microstructure and increased Ni diffusion during sintering. Sinter densities of single press single sinter XF Ni-Mo steels can approach $7.5\;g/cm^3$ at moderate compaction pressures. Leaner alloys based on extra-fine Ni powder are possible depending on the performance requirements of the PM steel part. Extra-fine Ni steels are particularly attractive for the growing market of high performance PM gears and sprockets.

  • PDF