• Title/Summary/Keyword: sink mobility

Search Result 49, Processing Time 0.029 seconds

Exploiting Mobility for Efficient Data Dissemination in Wireless Sensor Networks

  • Lee, Eui-Sin;Park, Soo-Chang;Yu, Fucai;Kim, Sang-Ha
    • Journal of Communications and Networks
    • /
    • v.11 no.4
    • /
    • pp.337-349
    • /
    • 2009
  • In this paper, we introduce a novel mobility model for mobile sinks in which the sinks move towards randomly distributed destinations, where each destination is associated with a mission. The novel mobility model is termed the random mobility with destinations. There have been many studies on mobile sinks; however, they merely support two extreme cases of sink mobility. The first case features the most common and general mobility, with the sinks moving randomly, unpredictably, and inartificially. The other case takes into account mobility only along predefined or determined paths such that the sinks can gather data from sensor nodes with minimum overhead. Unfortunately, these studies for the common mobility and predefined path mobility might not suit for supporting the random mobility with destinations. In order to support random mobility with destination, we propose a new protocol, in which the source nodes send their data to the next movement path of a mobile sink. To implement the proposed protocol, we first present a mechanism for predicting the next movement path of a mobile sink based on its previous movement path. With the information about predicted movement path included in a query packet, we further present a mechanism that source nodes send energy-efficiently their data along the next movement path before arriving of the mobile sink. Last, we present mechanisms for compensating the difference between the predicted movement path and the real movement path and for relaying the delayed data after arriving of the mobile sink on the next movement path, respectively. Simulation results show that the proposed protocol achieves better performance than the existing protocols.

Adaptive Reversal Tree Protocol with Optimal Path for Dynamic Sensor Networks

  • Hwang, Kwang-Il
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10A
    • /
    • pp.1004-1014
    • /
    • 2007
  • In sensor networks, it is crucial to reliably and energy-efficiently deliver sensed information from each source to a sink node. Specifically, in mobile sink (user) applications, due to the sink mobility, a stationary dissemination path may no longer be effective. The path will have to be continuously reconfigured according to the current location of the sink. Moreover, the dynamic optimal path from each source to the sink is required in order to reduce end-to-end delay and additional energy wastage. In this paper, an Adaptive Reversal Optimal path Tree (AROT) protocol is proposed. Information delivery from each source to a mobile sink can be easily achieved along the AROT without additional control overhead, because the AROT proactively performs adaptive sink mobility management. In addition, the dynamic path is optimal in terms of hop counts and the AROT can maintain a robust tree structure by quickly recovering the partitioned tree with minimum packet transmission. Finally, the simulation results demonstrate that the AROT is a considerably energy-efficient and robust protocol.

EEDARS: An Energy-Efficient Dual-Sink Algorithm with Role Switching Mechanism for Event-Driven Wireless Sensor Networks

  • Eslaminejad, Mohammadreza;Razak, Shukor Abd;Ismail, Abdul Samad Haji
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2473-2492
    • /
    • 2012
  • Energy conservation is a vital issue in wireless sensor networks. Recently, employing mobile sinks for data gathering become a pervasive trend to deal with this problem. The sink can follow stochastic or pre-defined paths; however the controlled mobility pattern nowadays is taken more into consideration. In this method, the sink moves across the network autonomously and changes its position based on the energy factors. Although the sink mobility would reduce nodes' energy consumption and enhance the network lifetime, the overhead caused by topological changes could waste unnecessary power through the sensor field. In this paper, we proposed EEDARS, an energy-efficient dual-sink algorithm with role switching mechanism which utilizes both static and mobile sinks. The static sink is engaged to avoid any periodic flooding for sink localization, while the mobile sink adaptively moves towards the event region for data collection. Furthermore, a role switching mechanism is applied to the protocol in order to send the nearest sink to the recent event area, hence shorten the path. This algorithm could be employed in event-driven and multi-hop scenarios. Analytical model and extensive simulation results for EEDARS demonstrate a significant improvement on the network metrics especially the lifetime, the load and the end-to-end delay.

Location Service and Data Dissemination Protocol for Mobile Sink Groups in Wireless Sensor Networks (무선 센서 네트워크에서 이동 싱크 그룹을 위한 위치 서비스와 데이터 전송 프로토콜)

  • Yoon, Min;Lee, Euisin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1431-1439
    • /
    • 2016
  • In this paper, we propose a new location service and location-based routing for data dissemination from a source to a mobile group sink in less energy consumption of the sensor node. Unlike the existing protocols, the proposed protocol uses a leader sink instead of a group area as the location information to represent a mobile sink group. The proposed protocol also uses grid leaders on virtual grid structure to support sink mobility in location service. By using a leader sink as a representative and grid leaders for mobility supporting, the proposed protocol can exploit an efficient hierarchical location service and data dissemination method without using flooding. Accordingly, the proposed protocol carries out upper layer location services and data dissemination between a leader sink and a source and lower layer location services and data dissemination between the leader sink and member sinks. Simulation results demonstrate that the proposed protocol achieves energy-efficiency.

Data Dissemination Protocol Considering Target Mobility in Ubiquitous Sensor Network (유비쿼터스 센서 네트워크 환경에서 감지대상의 이동성을 고려한 데이터 전달 프로토콜)

  • Suh Yu-Hwa;Kim Ki-Young;Shin Young-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.3A
    • /
    • pp.311-320
    • /
    • 2006
  • This paper proposes DDTM for USN having end-point mobility. The existing network protocols did not consider target's and sink's mobility. So it requires flooding and path update whenever targets or sinks move. This can lead to drain battery of sensors excessively and decrease lifetime of USN. DDTM is the protocol based on TTDD considering sink's mobility. TTDD provides sink's mobility efficiently by using the grid structure, but it requires the high energy because of reconstructing the grid structure whenever targets move. In this way, the proposed protocol can decrease a consumption of energy, since it reuses the existing grid structure of TTDD, if the target moves in local cell. We compare DDTM with TTDD under the total message and the energy consumption by using a discrete analytical model for cost analysis. Analytical results demonstrated that our proposed protocol can provide the higher efficiency on target's mobility.

Using Mobile Data Collectors to Enhance Energy Efficiency a nd Reliability in Delay Tolerant Wireless Sensor Networks

  • Yasmine-Derdour, Yasmine-Derdour;Bouabdellah-Kechar, Bouabdellah-Kechar;Faycal-Khelfi, Mohammed
    • Journal of Information Processing Systems
    • /
    • v.12 no.2
    • /
    • pp.275-294
    • /
    • 2016
  • A primary task in wireless sensor networks (WSNs) is data collection. The main objective of this task is to collect sensor readings from sensor fields at predetermined sinks using routing protocols without conducting network processing at intermediate nodes, which have been proved as being inefficient in many research studies using a static sink. The major drawback is that sensor nodes near a data sink are prone to dissipate more energy power than those far away due to their role as relay nodes. Recently, novel WSN architectures based on mobile sinks and mobile relay nodes, which are able to move inside the region of a deployed WSN, which has been developed in most research works related to mobile WSN mainly exploit mobility to reduce and balance energy consumption to enhance communication reliability among sensor nodes. Our main purpose in this paper is to propose a solution to the problem of deploying mobile data collectors for alleviating the high traffic load and resulting bottleneck in a sink's vicinity, which are caused by static approaches. For this reason, several WSNs based on mobile elements have been proposed. We studied two key issues in WSN mobility: the impact of the mobile element (sink or relay nodes) and the impact of the mobility model on WSN based on its performance expressed in terms of energy efficiency and reliability. We conducted an extensive set of simulation experiments. The results obtained reveal that the collection approach based on relay nodes and the mobility model based on stochastic perform better.

A Study of Routing Path Decision Method Supporting Mobility of Sink (싱크의 이동기능 지원을 위한 사전 경로배정방식 연구)

  • Park, Sang-Joon;Lee, Jong-Chan;Kim, Hyung-Jong
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • If a sink can move in sensor networks, the routing change can be more occur. If the sink has the mobility, it moves in sensor network area so that the connection between the sink system and sensor nodes will be changed continuously. Hence, the overhead can occur cased by the many routing changed. Therefore, the dynamic routing scheme is needed to support the mobile sink connection. In this paper, we propose the previous connection assignment scheme. The mobile sink can have low cost overhead from calculating dynamic rerouting that it determines the new virtual path before the physical path setup.

  • PDF

Grid Structure-Based Mobility Support Scheme for Sink Groups in Wireless Sensor Networks (무선 센서 네트워크에서 격자 구조 기반 이동 싱크 그룹 지원 방안)

  • Yim, Yongbin;Lee, Euisin;Kim, Sang-Ha
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.5
    • /
    • pp.239-246
    • /
    • 2017
  • Communications for mobile sink groups such as rescue teams or platoons bring about a new challenging issue for handling group mobility in wireless sensor networks. Recently, a group region-based approach has been proposed to send data to a mobile sink group. However, it uses excessive flooding for 3 steps (group region discovery, region information notification, and data dissemination) to support mobile sink group. Thus, it causes high energy consumption and data delivery failure. Moreover, its per-sink mobility supporting scheme makes energy consumption and data delivery failure more serious. Thus, this paper proposes an Energy-efficient and Reliable Mobile Group communication protocol (ERMG) to support a mobile sink group, which exploits a virtual grid structure. For the group region discover and notification and the data dissemination, ERMG uses communications with only cell heads of grid cells that manages group sinks. ERMG also uses a per-grid based scheme to support sink mobility. Simulation results show that ERMG has 30% less energy consumption and 6% more desired delivery deadline success ratio than the existing protocols.

An Origin-Centric Communication Scheme to Support Sink Mobility for Continuous Object Detection in IWSNs (산업용 무선 센서망을 이용한 연속개체 탐지에서 이동 싱크 지원을 위한 발원점 중심의 통신방안)

  • Kim, Myung-Eun;Kim, Cheonyong;Yim, Yongbin;Kim, Sang-Ha;Son, Young-Sung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.12
    • /
    • pp.301-312
    • /
    • 2018
  • In industrial wireless sensor networks, the continuous object detection such as fire or toxic gas detection is one of major applications. A continuous object occurs at a specific point and then diffuses over a wide area. Therefore, many studies have focused on accurately detecting a continuous object and delivering data to a static sink with an energy-efficient way. Recently, some applications such as fire suppression require mobile sinks to provide real-time response. However, the sink mobility support in continuous object detection brings challenging issues. The existing approaches supporting sink mobility are designed for individual object detection, so they establish one-to-one communication between a source and a mobile sink for location update. But these approaches are not appropriate for a continuous object detection since a mobile sink should establish one-to-many communication with all sources. The one-to-many communication increases energy consumption and thus shortens the network lifetime. In this paper, we propose the origin-centric communication scheme to support sink mobility in a continuous object detection. Simulation results verify that the proposed scheme surpasses all the other work in terms of energy consumption.

Data Dissemination Protocol for Supporting Both Sink Mobility and Event Mobility in Wireless Sensor Networks (무선 센서 네트워크에서 싱크 이동성과 이벤트 이동성을 지원하는 데이타 전달 프로토콜)

  • Choi, Young-Hwan;Lee, Dong-Hun;Ye, Tian;Jin, Min-Sook;Kim, Sang-Ha
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.316-320
    • /
    • 2008
  • Data dissemination schemes for wireless sensor networks, where sinks and event targets might be mobile, has been one of the active research fields. For doing that, stationary nodes gathered data on behalf of mobile sinks and the relayed data in previous studies. their schemes, however, lead to frequent query flooding and report congestion problems over sink moving. We propose a data dissemination protocol to solve both the query flooding and the report congestion problem. Our scheme improves the two shortcomings through sink location management. Finally, we prove effectiveness of our protocol through computer simulations.