• Title/Summary/Keyword: single-walled carbon nanotubes (SWCNT)

Search Result 60, Processing Time 0.034 seconds

Improvement of Mechanical Properties of IPMC through Developing a Degree of Dispersion of SWCNT/Nafion Composite (SWCNT/Nafion 복합체의 분산능 향상을 통한 IPMC의 기계적 특성 향상)

  • Kwon, Hui-June;Kim, Ha-Na;Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.131-136
    • /
    • 2011
  • Many researchers are recently studying about Electroactive polymer(EAP). But it has a physical limitation, because of property of material. Carbon nanotube(CNT) is known as the promising material which has excellent electro-mechanical characteristics and is mostly defect-free. It is expected that a successful synthesis of CNT and Nafion known as a primary material for IPMC would make a great improvement on its electro-mechanic feature. This study focuses on the method of synthesis of CNT with Nafion which improves electro-mechanical characteristic. To come up with mechanical dispersion with Nafion and Isopropyl Alcohol(IPA), we dispersed Single-walled carbon nanotubes(SWCNTs). For a uniformly layer of CNT, we used a spray gun on a hot plate by a simplified method. We fabricated a disperse SWCNT/Nafion composite uniformly. Through the use of the E-beam evaporator to form an uniform electrode layer, we consummated the IPMC actuator. This result shows improving 1.5 times mechanical properties about driving force in IPMC.

Programmed APTES and OTS Patterns for the Multi-Channel FET of Single-Walled Carbon Nanotubes (SWCNT 다중채널 FET용 표면 프로그램된 APTES와 OTS 패턴을 이용한 공정에 대한 연구)

  • Kim, Byung-Cheul;Kim, Joo-Yeon;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2015
  • In this paper, we have investigated a selective assembly method of single-walled carbon nanotubes (SWCNTs) on a silicon substrate using only photolithographic process and then proposed a fabrication method of field effect transistors (FETs) using SWCNT-based patterns. The aminopropylethoxysilane (APTES) patterns, which are formed for positively charged surface molecular patterns, are utilized to assemble and align millions of SWCNTs and we can more effectively assemble on a silicon (Si) surface using this method than assembly processes using only the 1-octadecyltrichlorosilane (OTS). We investigated a selective assembly method of SWCNTs on a Si surface using surface-programmed APTES and OTS patterns and then a fabrication method of FETs. photoresist(PR) patterns were made using photolithographic process on the silicon dioxide (SiO2) grown Si substrate and the substrate was placed in the OTS solution (1:500 v/v in anhydrous hexane) to cover the bare SiO2 regions. After removing the PR, the substrate was placed in APTES solution to backfill the remaining SiO2 area. This surface-programmed substrate was placed into a SWCNT solution dispersed in dichlorobenzene. SWCNTs were attracted toward the positively charged molecular regions, and aligned along the APTES patterns. On the contrary, SWCNT were not assembled on the OTS patterns. In this process, positively charged surface molecular patterns are utilized to direct the assembly of negatively charged SWCNT on SiO2. As a result, the selectively assembled SWCNT channels can be obtained between two electrodes(source and drain electrodes). Finally, we can successfully fabricate SWCNT-based multi-channel FETs by using our self-assembled monolayer method.

Tunable Electrical Properties of Aligned Single-Walled Carbon Nanotube Network-based Devices: Metallization and Chemical Sensor Applications

  • Kim, Young Lae;Hahm, Myung Gwan
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.535-538
    • /
    • 2017
  • Here we report the tunable electrical properties and chemical sensor of single-walled carbon nanotubes (SWCNTs) network-based devices with a functionalization technique. Formation of highly aligned SWCNT structures is made on $SiO_2/Si$ substrates using a template-based fluidic assembly process. We present a Platinum (Pt)-nanocluster decoration technique that reduces the resistivity of SWCNT network-based devices. This indicates the conversion of the semiconducting SWCNTs into metallic ones. In addition, we present the Hydrogen Sulfide ($H_2S$) gas detection by a redox reaction based on SWCNT networks functionalized with 2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) as a catalyst. We summarize current changes of devices resulting from the redox reactions in the presence of $H_2S$. The semiconducting (s)-SWCNT device functionalized with TEMPO shows high gas response of 420% at 60% humidity level compared to 140% gas response without TEMPO functionalization, which is about 3 times higher than bare s-SWCNT sensor at the same RH. These results reflect promising perspectives for real-time monitoring of $H_2S$ gases with high gas response and low power consumption.

Selective Dispersion of Carbon Nanotubes by Octadecylainine (옥타데실아민(octadecylamine)을 이용한 탄소나노튜브의 선택적 분산)

  • Lee Kwang-Hoon;Park Hoon;Chae Hee-Baik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • We separated semiconducting single-walled carbon nanotubes(sem-SWCNT) from the HiPco-SWCNTS by dispersion with octadecylamine(ODA). The mixture of acid-treated SWCWTS and ODA was heated at $120^{\circ}C$ for 120hours. ODA physisorbs selectively on the side-wall of sem-SWCNTS. The ODA-treated CNTs were dispersed in tetrahydrofuran(THF) via sonication. The ODA-physisorbed sem-SWCNT can be retained in the supernatant of THF, but met-SWCNT and unabsorbed sem-SWCNT were precipitated in THF. Raman spectra with 514 nm and 1074 nm were investigated. The amount of sem-SWCNT in the supernatant and precipitant was about 94 % and 50 %, respectively.

  • PDF

Effect of the top coating surface tension and thermal expansion matching on the electrical properties of single-walled carbon nanotube network films (표면장력과 열팽창계수 불일치가 단일벽 탄소나노튜브 필름의 전도성에 미치는 영향 연구)

  • Kim, Jun-Suk;Han, Joong-Tark;Jeong, Hae-Deuk;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.42-42
    • /
    • 2010
  • We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. The surface tension of the top coating passivation material and matching coefficients of thermal expansion for the substrate and carbon nanotube network are two crucial parameters for the fabrication of reliable and highly conductive single-walled carbon nanotube network thin films.

  • PDF

Effect of the top coating surface tension and thermal expansion matching on the electrical properties of single-walled carbon nanotube network films (표면장력과 열팽창계수 불일치가 단일벽 탄소나노튜브 필름의 전도성에 미치는 영향 연구)

  • Kim, Jun-Suk;Han, Joong-Tark;Jeong, Hee-Jin;Jeong, Seung-Yol;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.278-278
    • /
    • 2010
  • We have characterized the previously undescribed parameters for engineering the electrical properties of single-walled carbon nanotube (SWCNT) films for technological applications. The surface tension of the top coating passivation material and matching coefficients of thermal expansion for the substrate and carbon nanotube network are two crucial parameters for the fabrication of reliable and highly conductive single-walled carbon nanotube network thin films.

  • PDF

Electrospray Deposition and Characterization of Single-Walled Carbon Nanotube Thin Films

  • Sundharam, Sridharan;Choi, Kyung-Hyun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.40.1-40.1
    • /
    • 2011
  • Single-walled carbon nanotubes are one among the most promising carbonaceous materials to be used as the electrodes in the devices like micro batteries, supercapacitors, etc. In this study, single-walled carbon nanotube thin films have been fabricated through electrospray deposition technique which is one of the attractive direct printing methods in the field of printed electronics. Single-walled carbon nanotube ink (water dispersed, 3wt %) has been used to fabricate thin films through electrospray deposition technique. The as-deposited SWCNT thin films have been characterized using the appropriate characterization techniques and the results are presented.

  • PDF

Passively Q-switched Erbium Doped All-fiber Laser with High Pulse Energy Based on Evanescent Field Interaction with Single-walled Carbon Nanotube Saturable Absorber

  • Jeong, Hwanseong;Yeom, Dong-Il
    • Current Optics and Photonics
    • /
    • v.1 no.3
    • /
    • pp.203-206
    • /
    • 2017
  • We report a passive Q-switching of an all-fiber erbium-doped fiber laser delivering high pulse energy by using a high quality single-walled carbon nanotube saturable absorber (SWCNT-SA). A side-polished fiber coated with the SWCNT is employed as an in-line SA for evanescent wave interaction between the incident light and the SWCNT. This lateral interaction scheme enables a stable Q-switched fiber laser that generates high pulse energy. The central wavelength of the Q-switched pulse laser was measured as 1560 nm. A repetition rate frequency of the Q-switched laser is controlled from 78 kHz to 190 kHz by adjusting the applied pump power from 124 mW to 790 mW. The variation of pulse energy from 51 nJ to 270 nJ is also observed as increasing the pump power. The pulse energy of 270 nJ achieved at maximum pump power is 3 times larger than those reported in Q-switched all-fiber lasers using a SWCNT-SA. The tunable behaviors in pulse duration, pulse repetition rate, and pulse energy as a function of pump power are reported, and are well matched with theoretical expectation.

Removal of Natural Organic Matter (NOM) by Carbon Nanotubes Modified PVDF Membrane (탄소나노튜브(CNT)-PVDF 막을 이용한 자연용존유기물 제거)

  • Cho, Hyun-Hee;Cha, Min-Whan;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.148-156
    • /
    • 2012
  • In this research, the application of carbon nanotubes (CNTs) modified PVDF (polyvinylidene fluoride) membrane was tested as a simply and beginning attempt to overcome membrane fouling because CNTs importantly affect the transport of natural organic matter (NOM). Suwannee River fulvic acid (SRFA) as the representative of NOM was selected and its sorption results with single-walled CNT (SWCNT), multi-walled CNT (MWCNT), and oxidized MWCNT (O-MWCNT) were obtained through the batch experiment. SRFA sorption isotherms had a strong nonlinearity and its sorption capacity followed the order O-MWCNT < MWCNT < SWCNT. The adsorbed mass of SRFA on each CNT decreased as a function of pH due to their charge repulsion. For the CNT-PVDF membrane filtration experiments, the suspended CNT solution (10 mg/40 mL) was incorporated into $0.45{\mu}m$-PVDF membrane and 5 mg/L of SRFA solution was monitored using UV detector connected with high pressure pump after passing through CNT-PVDF membrane. The SRFA removal efficiency by MWCNT-PVDF membrane was the strongest among other modified membranes. This suggests that the CNT modified microfiltration (MF) membrane might effectively and selectively apply to treat the contaminated water including organic compounds in the presence of NOM.

Dispersion of Highly Pure Single-Walled Carbon Nanotube in Aqueous Solution of Various Surfactants (다양한 계면활성제를 이용한 고순도 단일벽 탄소나노튜브의 수계 분산)

  • Goak, Jeung-Choon;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.153-153
    • /
    • 2008
  • Practical application of single-walled carbon nanotubes (SWCNTs) qualified as a promising material has been limited by either poor dispersion or their insolubility in aqueous or organic media due to formation of bundling by relatively high surface energy. Thus, major attention to overcome this issue has been paid at surface modification of CNTs by functionalization, but this introduces defects to the sidewall of CNTs, consequently perturbing the inherent electronic and optical properties. Therefore, using surfactants is a general approach to disperse SWCNTs with lower damages by which bundled nanotubes could be dispersed up to the level of individuals or small bundles. Here, we have investigated various surfactants for their efficiency in dissolving purified SWCNTs produced by arc discharge in deionized water. To compare the surfactants respectively, we have determined the least amount of each surfactant to suspend the nanotubes under optimized experimental conditions(CNT amount, sonication power, and centrifugation speed, etc.) set on the basis of the most common surfactant (sodium dodecyl sulfate, SDS) and discussed the qualitative and quantitative characterization of SWCNT dispersions by UV-Vis absorption spectroscopy. Quantitative aspect about nanotube dispersion was that in particular N-methyl-2-pyrrolidone (NMP) and sodium dodecylbenzene sulfonate (NaDDBS) were found to be effective in dispersing individual tubes.

  • PDF