• Title/Summary/Keyword: single-stage actuator

Search Result 27, Processing Time 0.037 seconds

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 박기형;김재열;곽이구
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.5
    • /
    • pp.65-72
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system(100mm stroke and $\pm$ l0nm positioning accuracy) with single plane X-Y stage are materialized.

Integration of a micro lens on a in-plane positioning actuator with 2-DOF (마이크로 렌즈가 집적된 2-자유도 평면구동기의 설계 및 제작)

  • Kim, Che-Heung;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3322-3324
    • /
    • 1999
  • This paper studies on the design and fabrication of a micro in-plane positioning actuator integrated with a microlens. Proposed in-plane actuator is a micro XY-stage which is composed of two linear comb drive actuators being orthogonal to each other. In the fabrication of actuator, the single crystalline silicon substrate anodically bonded with a #7740 glass substrate is used because of simple release and passivation. The structure of actuator is formed on the silicon facet of bonded fixture by chlorine-based deep RIE and then released by isotropic wet etching of glass (#7740) in hydrofluoric acid solution. Fabricated actuator has a large travel range up to $30({\pm}15){\mu}m$ and high resolution less than 0.01f1l1l in each direction. Experimented resonant frequency of this actuator is 630Hz. The micro-Fresnel lens is fabricated on the square-shape glass structure prepared in the center of actuator.

  • PDF

Single Axis Vibration Isolation System Using Series Active-passive Approach (직렬형 능-수동 제진 방법을 이용한 1축 제진 시스템)

  • Banik, Rahul;Lee, Dong-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.176-179
    • /
    • 2005
  • To control the vibration transmitted to the precision instruments from ground has always been of great interest among the researchers. This paper proposes a single axis vibration isolation system which can be used as a module far a table top six axis isolator for highly precise measurement and actuation system. The combined active-passive isolation principle is used for vertical vibration isolation by mounting the instrument on a passively damped isolation system made of Elastomer along with the active stage in series which consists of very stiff piezo actuator. The active stage works in combination with the passive stage for working as a very low frequency vibration attenuator. The active stage is isolated from the payload disturbance through the Passive stage and thus modularity in control is achieved. This made the control algorithm much easier as it does not need to be tuned to specific payload.

  • PDF

초정밀 스테이지 설계 및 제작

  • 강중옥;한창수;홍성욱
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.177-181
    • /
    • 2003
  • This paper presents a 3-axis fine positioning stage. All the procedure concerning the design and fabrication of the stage are described. The stage considered here is composed of flexure hinges, piezoelectric actuators and their peripherals. A special flexure hinge is adopted to be able to actuate the single stage in three axes at the same time. A ball contact mechanism is introduced into the piezoelectric actuator to avoid the cross talk among the axes. The final design is obtained with the theoretical analysis on the stage. An actual fine stage is developed and the design specifications are verified through an experiment.

  • PDF

The Seek Control Design with Gain-Scheduling in Hard Disk Drives

  • Hwang, Eun-Ju;Hyun, Chang-Ho;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The increased disk rotational velocity to improve the data transfer rate has raised up many serious problems in its servo control system which should control the position and velocity of a spot relative to a rotating disk. This paper proposes gain-scheduling-based track-seek control for single stage actuator of hard disk drives. Gain scheduling is a technique that can extend the validity of the linearization approach to a range of operating points and one of the most popular approaches to nonlinear control design. The proposed method schedules controller gains to improve the transient response and minimize overshoot during the functions of the read/write head positioning servomechanism for the seek control. The validity of the proposed method is demonstrated through stability analysis and simulation results.

Simulation and Control performance evaluation of Ultra-Precision Single Plane X-Y Stage (초정밀 평면 X-Y 스테이지의 시뮬레이션 및 제어성능 평가)

  • 곽이구;김재열;한재호;김영석;안재신;노기웅
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.422-428
    • /
    • 2002
  • In this study, actuator, sensor, guide, power transmission element and control method are considered for ultra-precision positioning apparatus. Through previous process, single plane X-Y stage with ultra-precision positioning is manufactured. Global stage for the purpose of materialization with robust system, is combined by using AC servo motor and ball screw and rolling guide. And ultra-precision positioning system is developed by micro stage with elastic hinge type and piezo element. global servo and micro servo for the purpose of materialization positioning accuracy with nm(nanometer) are controlled simultaneously by using incremental encoder and laser interferometer as displacement measurement sensor. Through previous process, ultra-precision positioning system (100mm stroke and ${\pm}$ 10nm positioning accuracy) with single plane X-Y stage are materialized.

  • PDF

Direct Seek Control for Swing-arm Type Dual Stage Actuators in Blu-Ray Disc Drive Systems

  • Ryu, Shi-Yang;Jung, Soo-Yul;Yoon, Hyeong-Deok;Park, In-Shik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.735-739
    • /
    • 2003
  • This paper presents a direct seek control algorithm for swing-arm type dual stage servo system that consists of a coarse actuator and a fine actuator. The proposed scheme is to design a control system that attenuates the effect of dynamic coupling between the two actuators so that the seek operation can be performed in a single-shot with stability. In an optical drive system with dual stage servo mechanism, the effect of dynamic coupling between the two actuators needs to be handled during the coarse seek operation due to its inherent structure. In an extreme case, the two actuators can collide each other, which leads to critical degradation of the seek performance. To handle this problem, our proposed control scheme is to generate the drive signals such that the two actuators behave as if they are a single fixed body. To this end, a feedforward controller and two feedback controllers are designed that enable the current drive system perform wide range of track seek. Simulation results are provided to show the validity and feasibility of our proposed algorithm.

  • PDF

3D Lithography using X-ray Exposure Devices Integrated with Electrostatic and Electrothermal Actuators

  • Lee, Kwang-Cheol;Lee, Seung S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.259-267
    • /
    • 2002
  • We present a novel 3D fabrication method with single X-ray process utilizing an X-ray mask in which a micro-actuator is integrated. An X-ray absorber is electroplated on the shuttle mass driven by the integrated micro-actuator during deep X-ray exposures. 3D microstructures are revealed by development kinetics and modulated in-depth dose distribution in resist, usually PMMA. Fabrication of X-ray masks with integrated electrothermal xy-stage and electrostatic actuator is presented along with discussions on PMMA development characteristics. Both devices use $20-\mu\textrm{m}$-thick overhanging single crystal Si as a structural material and fabricated using deep reactive ion etching of silicon-on-insulator wafer, phosphorous diffusion, gold electroplating, and bulk micromachining process. In electrostatic devices, $10-\mu\textrm{m}-thick$ gold absorber on $1mm{\times}1mm$ Si shuttle mass is supported by $10-\mu\textrm{m}-wide$, 1-mm-long suspension beams and oscillated by comb electrodes during X-ray exposures. In electrothermal devices, gold absorber on 1.42 mm diameter shuttle mass is oscillated in x and y directions sequentially by thermal expansion caused by joule heating of the corresponding bent beam actuators. The fundamental frequency and amplitude of the electrostatic devices are around 3.6 kHz and $20\mu\textrm{m}$, respectively, for a dc bias of 100 V and an ac bias of 20 VP-P (peak-peak). Displacements in x and y directions of the electrothermal devices are both around $20{\;}\mu\textrm{m}$at 742 mW input power. S-shaped and conical shaped PMMA microstructures are demonstrated through X-ray experiments with the fabricated devices.

The End-Point Position Control of a Translational Flexible Arm by Inverse Dynamics (역동역학에 의한 병진운동 탄성 Arm 선단의 위치제어)

  • Lee, Seong-Cheol;Bang, Du-Yeol;S. Chonan;H. Inooka
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.136-146
    • /
    • 1992
  • This paper provides the end-point positioning of a single-link flexible robot arm by inverse dynamics. The system is composed of a flexible arm, the mobile ballscrew stage as an arm base, a DC servomotor as an actuator, and a computer. Actuator voltages required for the model of a flexible arm to follow a given tip trajectory are formulated on the basis of the Bermoullie-Euler beam theory and solved by applying the Laplace transform method, and computed by the numerical inversion method proposed by Weeks. The mobile stage as the arm base is shifted so that the end-point follows the desired trajectories. Then the trajectory of end-point is measured by the laser displacement sensor. Here, two kinds of functions are chosen for the given tip trajectories. One is what is called the bang-bang acceleration profile and the other is the Gaussian velocity profile.

  • PDF