Structural characteristics for standard models of single-span plastic greenhouse in Korea and high tunnels in North America were analyzed, and comparative analysis for greenhouse environments measuring in Korean farmhouse and Rutgers high tunnel was carried out to find structural and environmental improvements of single-span plastic greenhouses that occupy most of Korean greenhouse. Widths of high tunnels are similar to single-span plastic greenhouses but their heights are high comparatively and their side heights are fairly higher than single-span plastic greenhouses specially. Rafters, which are main frames, section sizes of high tunnels are bigger and their intervals are wider than single-span plastic greenhouses. Relative bending resistances compared with representative Korean greenhouse were analyzed by 0.92 to 1.42 in single-span plastic greenhouses, and 1.38 to 2.96 in high tunnels. Frame ratios of single-span plastic greenhouses were 6.8 to 8.6%, and those of high tunnels were 5.5 to 8.7%. We analyzed air temperatures and solar radiations measured in single-span plastic greenhouse and high tunnel on clear days in late March. There were outside temperatures in generally similar range, and judging by rise of indoor temperatures, ventilation performance of high tunnel is more excellent than single-span plastic greenhouse. Solar radiations of two areas were no big difference but light transmittance of high tunnel was a little bit higher than single-span plastic greenhouse. Single-span plastic greenhouses are disadvantageous in environmental managements such as ventilation performance and light transmittance because distance between greenhouses is too narrow and length of greenhouse is too long compared to high tunnels. To get the environmental improvement effects as well as to increase the structural resistance of single-span plastic greenhouses are achievable by widening the width of greenhouse in possible range, widening the space between rafters, and enlarging the section size of rafters. Also, we need to secure enough distance between greenhouses and to restrict the length of greenhouse by maximum 50 m in order to improve the ventilation performance and the light transmittance.
Yeo, Kyung-Hwan;Yu, In-Ho;Rhee, Han-Cheol;Cheong, Jae-Woan;Choi, Gyeong Lee
Korean Journal of Agricultural Science
/
v.40
no.4
/
pp.317-323
/
2013
This research was conducted to obtain the basic information for establishment of standard guidelines in the design and installation of roof ventilation system in single-span plastic greenhouse. To achieve this, the greenhouse structure & characteristics, cultivation status, and ventilation system were investigated for single-span greenhouse with roof ventilation system cultivating the Cucurbitaceae vegetables, watermelon, cucumber, and oriental melon. Most of single-span watermelon greenhouse in Haman and Buyeo area were a hoop-style and the ventilation system in those greenhouses mostly consisted of two different types of 'roof vent (circular or chimney type) + side vent (hole) + fan' and 'roof vent (circular type) + side vent (hole or roll-up type)'. The diameter of circular and chimney-type vent was mostly 60cm and the average number of vents was 10.5 per a bay with vent spacing of average 6.75m. The ratio of roof vent area to floor area and side vent area in the single-span watermelon greenhouse with ventilation fan were 0.46% and 7.6%, respectively. The single-span cucumber greenhouse in Haman and Changnyeong area were a gable roof type, such as even span, half span, three quarter and the 70.6% of total investigated single-span greenhouses was equipped with a roof ventilation fan while 58.8% had a circulation fan inside the greenhouse. The ratios of roof vent area to floor area in the single-span cucumber greenhouse ranged from 0.61 to 0.96% and in the case of the square roof vent, were higher than that of the circular type vent. On average, the roof ventilation fan in single-span cucumber greenhouse was equipped with the power input of 210W and maximum air volume of $85.0m^3/min$, and the number of fans was 9.75 per a bay. The number of roof vent of single-span oriental melon greenhouse with only roll-up type side vent ranged from 8 to 21 (average 14.8), which was higher than that of other Cucurbitaceae vegetables while the vent number of the greenhouse with a roof ventilation fan was average 7 per a bay.
This study supplies basic data to develop a greenhouse model for reducing the damage to single-span greenhouses caused by strong winds and heavy snow. Single-span plastic greenhouses are predominantly used for growing crops in Korea. Thus, the safety wind speeds for single-span greenhouses were calculated and compared with the actual wind speeds and snow depths over a period of 8 years in different regions to analyze the structural safety of single-span greenhouses. The unit wind load and unit snow load were applied to different designs of single-span greenhouse according to the cultivated crop to achieve a structural analysis. As a result, the maximum section force for the wind and snow load was greatest for leaf and root vegetables, where the safety wind speeds for single-span greenhouses according to the cultivated crop were 17.7 m/s(leaf vegetables), 20.2 m/s (fruit vegetables), and 22.3 m/s (root vegetables). Thus, the single-span greenhouses were not found to be safe for the wind load in most regions, except for Hongcheon, Icheon and Sungju. Plus, the safety snow depths for single-span greenhouses according to the crop were 8.8 cm (leaf vegetables), 9.4 cm (fruit vegetables), and 11.8cm (root vegetables). Thus, when comparing the safety snow depths with the actual snow depths, the single-span greenhouses were not found to be safe. Therefore, to improve the safety of single-span greenhouses, the structures need reinforcement by reducing the interval between rafters or increasing the size of the pipes. However, additional research is needed.
This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.
Journal of The Korean Society of Agricultural Engineers
/
v.66
no.1
/
pp.39-48
/
2024
Plastic greenhouses are simple structures consisting of lightweight materials such as steel pipes and polyvinyl chloride. However, serious damage occurs due to heavy winds and typhoon every year. To prevent a collapse of structural members, the Ministry of Agriculture and Rural Development has distributed plans and specifications for disaster-resistant standards. Despite these efforts, more than 50% of greenhouses still do not satisfy the disaster-resistant standards. Among the greenhouses that do not meet these standards, 85% are single-span greenhouses proposed 20 years ago. Consequently, there is a need to evaluate the safety of wind loads for the single-span greenhouse. Unfortunately, there are no design specifications for the greenhouses under wind loads. Therefore, a Korean design standard (KDS) has been utilized. KDS is defined with reference to wind speeds occurring once every 500 years, raising concerns about potential overdesign when considering the durability of plastic greenhouses. To address this, the modified wind load, considering the durability of the plastic greenhouse, was calculated, and a safety evaluation was conducted for sigle G-type plastic greenhouse. It was observed that the moment acting on the windward surface was substantial, and there was a risk of the foundation being pulled out if the basic wind speed exceeded 32 m/s. In terms of the combination strength ratio, it was less than 1.0 only on the leeward side when the basic wind speed was 24 m/s and 26 m/s. However, in all other cases, it exceeded 1.0, indicating an unsafe condition and highlighting the necessity for reinforcement.
Ventilation rates, inside and outside weather data were measured in a arch-shape single-span plastic greenhouse growing tomatoes. On the roof of the experimental greenhouse, round windows which have a diameter of 0.6 m were installed at intervals of 8m. It showed that the number of air changes in this greenhouse were average 0.17 volumes per minute and in the range of 0.02 to 0.32 volumes per minute. These air changes are insufficient to meet the recommended ventilation rate for commercial greenhouses, and it is estimated that interval of 6 m is appropriate for spring or fall season. For summer season, it is necessary to narrow the space or to enlarge the open area of roof windows. Using the heat balance model, the evapotranspiration coefficients of greenhouse tomatoes were estimated from experimental ventilation data, overall heat transfer and solar radiation. It showed that the evapotranspiration coefficients were average 0.62 and in the 0.39 to 0.85 range. We suggest applying 0.6 as the evapotranspiration coefficient in design of ventilation for the single-span tomato greenhouses.
Direct and diffuse components of solar radiation were measured inside and outside a single-span plastic greenhouse. To analyze the direct solar radiation inside the plastic greenhouse, the cross-section of the greenhouse was assumed to be circular. Then the direct solar radiation transmitted into the greenhouse was calculated theoretically, and compared with the experimental measurements. The results are summarized as follows: (1) The transmissivities of total solar radiation were about 65% on cloudy days and 50% on clear days. For cloudy days, the transmissivity of the total solar radiation was regarded as the transmissivity of sky diffuse radiation. (2) The ratio of the inside effective scattered component of direct solar radiation to the diffuse radiation was 60-65%. (3) It appeared that the seasonal variation of the transmissivity of total solar radiation was adversely affected by the transmissivity of direct solar radiation and the effective scattered coefficient. But the effect of the transmissivity of direct solar radiation was dominant factor. (4) Computer simulation showed that the inside direct solar radiation was decreased as the floor of the plastic greenhouse was higher. (5) The predicted value of the inside direct solar radiation was 3.3% to 29.0% higher than the measured value.
This study was implemented to clarify the effect of a supplementary pole on the increment of safety snow-depth for the single-span plastic greenhouses which had been run as standardized facilities for 10 to 15 years till April, 2007. In the previous work, some of the basic ideas of the use of a temporary pole were discussed, but application was restricted to both 2-D and the cases which took rafter's specifications into no consideration, and there was also much less experimental information available. So, by modeling the house as the 3-D frame structure, the present study attempted to provide a comprehensive review of the pole's effect through structural analyses as well as measurements. Structural analyses abnormally revealed that the pole regardless of its interval had a negative effect on the structural stability. The results was certainly inconsistent with practical experience and hence implied a necessity of reinforcing the roof purlin. Accordingly, with the purlin being sufficiently reinforced, the plastic greenhouse with the pole's interval of 3~4 m had two times safety snow-depth more than that of the plastic greenhouse without the pole. And the safety snow-depth of five types of the single-span plastic greenhouses according to the pole's intervals was presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.