• Title/Summary/Keyword: single-phase photovoltaic inverter

Search Result 83, Processing Time 0.035 seconds

Single Phase Inverter for Photovoltaic System (태양광 발전시스템용 단상인버터)

  • Oh, Jung-Suk;Lee, Seung-Hwan;Kang, Seung-Uk;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.438-440
    • /
    • 1994
  • The output power of photovoltaic(PV) system is variation due to the change in the insolation, temperature and etc. This problem can be overcome if the system is connected to storage batteries and the power system. According to, this paper propose photovoltaic Voltage Source Inverter, which would be connected utility interactive system. It has been experimentally verified that maximum power can be obtained by varing modulation index(MI).

  • PDF

Photovoltaic System for SPIM Vector control (SPIM 벡터제어를 위한 태양광 발전 시스템)

  • Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Kim, Do-Yeon;Park, Ki-Tae;Choi, Jung-Hoon;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.295-299
    • /
    • 2007
  • This paper presents the photovoltaic(PV) water pumping system with a maximum power point tracking(MPPT). The wale- pumping system uses a variable speed single phase induction motor(SPIM) driven a centrifugal pimp by field oriented control(FOC) inverter. The MPPT using a DC-DC converter controlled the duty cycle to track maximum power from PV under different insolation conditions. The duty cycle directly relate with a flux producing current control($i_{ds}$). The FOC inverter uses a current control voltage source inverter(CC-VSI). The simulation results are shown that the characteristics and performance of drive system, which varies as each conditions of light by expresses in voltage ($V_{dq}$), current($I_{dq}$), speed of motor and torque.

  • PDF

A New On-Line Dead-Time Compensator for Single-Phase PV Inverter (단상 PV 인버터용 온-라인 데드타임 보상기 연구)

  • Vu, Trung-Kien;Cha, Han-Ju
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.216-217
    • /
    • 2010
  • This paper presents a new software-based on-line dead-time compensation technique for single-phase grid-connected photovoltaic (PV) inverter system. To improve the mitigation of dead-time effect around the zero-crossing point of phase current, a selective harmonic elimination of instantaneous feedback current is used as an additional part of conventional current control scheme. Simulation and experimental results are shown to verify the effectiveness of proposed compensation method in the grid-connected power distributed generation systems.

  • PDF

Low-Cost High-Efficiency Two-Stage Cascaded Converter of Step-Down Buck and Tapped-Inductor Boost for Photovoltaic Micro-Inverters (태양광 마이크로 인버터를 위한 탭인덕터 부스트 및 강압형 컨버터 캐스케이드 타입 저가형 고효율 전력변환기)

  • Jang, Jong-Ho;Shin, Jong-Hyun;Park, Joung-Hu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.157-163
    • /
    • 2014
  • This paper proposes a two-stage step-down buck and a tapped-inductor boost cascaded converter for high efficiency photovoltaic micro-inverter applications. The proposed inverter is a new structure to inject a rectified sinusoidal current into a low-frequency switching inverter for single-phase grid with unity power factor. To build a rectified-waveform of the output current. the converter employs both of a high efficiency step-up and a step-down converter in cascade. In step-down mode, tapped inductor(TI) boost converter stops and the buck converter operates alone. In boost mode, the TI converter operates with the halt of buck operation. The converter provides a rectified current to low frequency inverter, then the inverter converts the current into a unity power-factor sinusoidal waveform. By applying a TI, the converter can decrease the turn-on ratios of the main switch in TI boost converter even with an extreme step-up operation. The performance validation of the proposed design is confirmed by an experimental results of a 120W hardware prototype.

Maximum Power Point Tracking Controller Connecting PV System to Grid

  • Ahmed G. Abo-Khalil;Lee Dong-Choon;Choi Jong-Woo;Kim Heung-Geun
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.226-234
    • /
    • 2006
  • Photovoltaic (PV) generators have nonlinear V-I characteristics and maximum power points which vary with illumination level and temperature. Using a maximum power point tracker (MPPT) with an intermediate converter can increase the system efficiency by matching the PV systems to the load. This paper presents a maximum power point tracker based on fuzzy logic and a control scheme for a single-phase inverter connected to the utility grid. The fuzzy logic controller (FLC) provides an adaptive nature for system performance. Also the FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve the control system. A single-phase AC-DC inverter is used to connect the PV system to the grid utility and local loads. While a control scheme is implemented to inject the PV output power to the utility grid at unity power factor and reduced harmonic level. The simulation results have shown the effectiveness of the proposed scheme.

A Single-phase PWM Voltage Source Inverter for Photovoltaic Generation System (태양광 발전시스템을 위한 단상 PWM 전압형 인버터)

  • Yoo, Taek-Bin;Sung, Nark-Kuy;Kang, Seung-Wook;Lee, Seung-Hwan;Lee, Hoon-Goo;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.443-445
    • /
    • 1995
  • Since the residential load is an AC load, while the output of solar cell is a DC power, the photovoltaic system needs the DC/AC converter to utilize solar cell and must provide the sinusoidal wave current and voltage with unity power factor in the case of driving to Interact with utility line. It is always necessary for the output of solar cell to operate in the vicinity of maximum power point, since it is greatly fluctuated by insolation. This paper treats that we will constitute a single phase PWM voltage source inverter and trace the modulation index which always maximize the output of solar cell in propotion to insolation variation and prove it by simulation that we can provide current wave, which is nearly sinusoidal wave with unity power factor, for load and utility line.

  • PDF

Design and implementation of 3 kW Photovoltaic Power Conditioning System using a Current based Maximum Power Point Tracking (전류형 MPPT를 이용한 3 kW 태양광 인버터 시스템 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey;Kim, Jae-Eon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1796-1801
    • /
    • 2008
  • In this paper, a new current based maximum power point tracking (CMPPT) method is proposed for a single phase photovoltaic power conditioning system and the current based MPPT modifies incremental conductance method. The current based MPPT method makes the entire control structure of the power conditioning system simple and uses an inherent current source characteristic of solar cell array. In addition, digital phase locked loop using an all pass filter is introduced to detect phase of grid voltage as well as peak voltage. Controllers about dc/dc boost converter, dc-link voltage, dc/ac inverter is designed for a coordinated operation. Furthermore, PI current control using a pseudo synchronous d-q transformation is employed for grid current control with unity power factor. 3kW prototype photovoltaic power conditioning system is built and its experimental results are given to verify the effectiveness of the proposed control schemes.

Maximum Power Point Tracking Photovoltaic Invert (최대전력 추적 태양광 인버터 시스템)

  • Kim, Man-Sig;Kim, Sil-Keun;Hong, Jung-Pyo;Hong, Soon-Ill
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1191-1192
    • /
    • 2006
  • This paper propose method of maximum power point tracking using boost converter for a connected single phase inverter. The maximum power point tracking control is based on generated circuit control MOSFET switch of two boost converter and single phase inverter uses predicted current control to control four IGBT's switch in full bridge. The predicted current control provide current with sinusoidal wave shape and inphase with voltage.

  • PDF

Design and Control of the Single-phase Inverter for Utility Interactive Photovoltaic Generation System (계통연계 태양광발전시스템용 단상 인버터의 설계 및 제어)

  • Hwang, In-Ho;Seong, Se-Jin
    • Solar Energy
    • /
    • v.17 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • Recently, new generation systems using solar cells or fuel cells are under development. Particularly, it is expected that small scale, utility interactive, dispersed PV system will be widely diffused in the near future. The inverter used in coupling the PV array with utility lines is an important factor determining the overall performance of power generation systems. This paper presents the design and control method of the single-phase PV inverter system that is capable of compensating reactive power including harmonic distortions. It is shown that reactive power caused by rectifier load can be compensated by the proposed inverter system.

  • PDF

Maximum Power Point Tracking Control for a Grid-Tie Photovoltaic Inverter (계통 연계형 태양광 인버터에서 최대 출력 점 추적 제어)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.5
    • /
    • pp.72-79
    • /
    • 2009
  • Solar energy is desirable due to its renewable and pollution-free properties. In order to utilize the present utility grid infrastructure for power transmission and distribution, a do-dc boost converter and grid connected dc-to-ac inverters are needed for solar power generation. The dc-dc boost converter allows the PV system to operate at high do-link voltage. The single-phase inverter provides the necessary voltage and frequency for interconnection to the grid. In this paper, first, current loop transfer function of a single-phase grid-tie inverter has been systematically derived Second the MPPT of conductance increment method at converter side is proposed to supply the maximum power to the inverter side. Simulation results are shown to access the performance of PV system and its behaviour at the interconnection point.