• 제목/요약/키워드: single-objective optimization

검색결과 218건 처리시간 0.038초

텐세그리티 구조물 설계를 위한 다목적 최적화 기법에 관한 연구 (Multi-objective Optimization for Force Design of Tensegrity Structures)

  • Ohsaki, Makoto;Zhang, Jingyao;Kim, Jae-Yeol
    • 한국공간구조학회논문집
    • /
    • 제8권1호
    • /
    • pp.49-56
    • /
    • 2008
  • 텐세그리티 구조물의 설계를 위한 다목적 최적화 기법이 제시되었다. 구조물의 기하가 먼저 주어지며, 설계변수는 부재력이다. 목적함수는 최대 강성매트릭스에 대한 최저 고유치와 찾고자 하는 목표값으로부터 가장 근접하게 일치하는 부재력이다. 복수의 목적함수 문제가 구속조건을 도입하여 일련의 단일 목적함수 문제로 전환되었다. 본 논문의 타당성을 알아보기 위해 텐세그리티 그리드에 대한 최적해를 구해 보았다.

  • PDF

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Off-line Multicritera Optimization of Creep Feed Ceramic Grinding Process

  • Chen Ming-Kuen
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 1998년도 The 12th Asia Quality Management Symposium* Total Quality Management for Restoring Competitiveness
    • /
    • pp.680-695
    • /
    • 1998
  • The objective of this study is to optimize the responses of the creep feed ceramic grinding process simultaneously by an off-1ine multicriteria optimization methodology. The responses considered as objectives are material removal rate, flexural strength, normal grinding force, workpiece surface roughness and grinder power. Alumina material was ground by the creep feed grinding mode using superabrasive grinding wheels. The process variables optimized for the above objectives include grinding wheel specification, such as bond type, mesh size, and grit concentration, and grinding process parameters, such as depth of cut and feed rate. A weighting method transforms the multi-objective problem into a single-objective programming format and then, by parametric variation of weights, the set of non-dominated optimum solutions are obtained. Finally, the multi-objective optimization methodology was tested by a sensitivity analysis to check the stability of the model.

  • PDF

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • 제26권2호
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

Automated Molding Design Methodology to Optimize Multiple defects in Injection Molded Parts

  • Park, Jong-Cheon;Kim, Byung H.
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.133-145
    • /
    • 2000
  • Plastic molding designers are frequently faced with optimizing multiple defects in injection molded parts. these defects are usually in conflict with each other, and thus a tradeoff needs to be made reach a final compromised solution. In this study, an automated injection molding design methodology has been developed to optimize multiple defects of injection molded parts. Two features of the proposed methodology are as follows: one is to apply the utility theory to transform the original multiple objective optimization problem into single objective optimization problem with utility as objective function, the other is an implementation of a direct search-based injection molding optimization procedure with automated consideration of process variation. The modified complex method is used as a general optimization tool in this research. The developed methodology was applied to an actual molding design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production, this study will be of immense value to industry in reducing the product development time and enhancing the product quality.

  • PDF

의료용 베드 헤드 콘솔의 강도조건을 고려한 최적 설계 (Optimal Design of Medical Bed Head Consol Considering the Strength Condition)

  • 변성광;최하영;이봉구
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.8-14
    • /
    • 2016
  • Medical bed head consoles (BHC) are generally used to increase the efficiency of medical equipment and speed the medical treatment response time. The BHC design has been consistently improved including a movable shelf unit that is embedded to mount stably medical instruments on the lower part of the main console. The cost of a BHC can be reduced through design optimization to limit the overall weight. However, as the size of a head console might decrease due to design optimization, the BHC deflection could be increased. In this study, multi-objective optimal design was adopted to consider this BHC design problem. In order to reduce the cost of optimization planning, an approximate model was applied for the design optimization. In the context of approximate optimization, we used the response surface method and non-dominant sorting genetic algorithm developed from various fields. Multi-objective optimal solutions were also compared with a single objective optimal design.

2-D Robust Design Optimization on Unstructured Meshes

  • Lee Sang Wook;Kwon Oh Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.240-242
    • /
    • 2003
  • A method for performing two-dimensional lift-constraint drag minimization in inviscid compressible flows on unstructured meshes is developed. Sensitivities of objective function with respect to the design variables are efficiently obtained by using a continuous adjoint method. In addition, parallel algorithm is used in multi-point design optimization to enhance the computational efficiency. The characteristics of single-point and multi-point optimization are examined, and the comparison of these two method is presented.

  • PDF

Model updating and damage detection in multi-story shear frames using Salp Swarm Algorithm

  • Ghannadi, Parsa;Kourehli, Seyed Sina
    • Earthquakes and Structures
    • /
    • 제17권1호
    • /
    • pp.63-73
    • /
    • 2019
  • This paper studies damage detection as an optimization problem. A new objective function based on changes in natural frequencies, and Natural Frequency Vector Assurance Criterion (NFVAC) was developed. Due to their easy and fast acquisition, natural frequencies were utilized to detect structural damages. Moreover, they are sensitive to stiffness reduction. The method presented here consists of two stages. Firstly, Finite Element Model (FEM) is updated. Secondly, damage severities and locations are determined. To minimize the proposed objective function, a new bio-inspired optimization algorithm called salp swarm was employed. Efficiency of the method presented here is validated by three experimental examples. The first example relates to three-story shear frame with two single damage cases in the first story. The second relates to a five-story shear frame with single and multiple damage cases in the first and third stories. The last one relates to a large-scale eight-story shear frame with minor damage case in the first and third stories. Moreover, the performance of Salp Swarm Algorithm (SSA) was compared with Particle Swarm Optimization (PSO). The results show that better accuracy is obtained using SSA than using PSO. The obtained results clearly indicate that the proposed method can be used to determine accurately and efficiently both damage location and severity in multi-story shear frames.

평판 작동기의 최적화를 통한 평면 스피커 설계 (Flat Speaker Design by Optimization of Plane Actuator)

  • 김승조;황준석
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1999년도 학술발표대회 논문집 제18권 2호
    • /
    • pp.237-242
    • /
    • 1999
  • In this study, a design method using plane actuator is developed to make new speaker system, whose shape is much thinner than that of conventional loudspeaker. Piezofilm(PVDF) is used as plane actuator of flat speaker. To avoid the distortion of sound radiated from flat speaker, the frequency response of radiated sound to be flat is taken as the design objective. The electrode pattern and orientation angle of piezofilm actuator is optimized to satisfy the design objective. The formulation is based on the coupled finite element and boundary element method. Genetic algorithm is used in the optimization process, which is useful in the optimization of discrete design variables. Frequency response with optimized piezofilm actuator is made flat enough to satisfy the design objective. For the enhancement of sound power, double-layered piezofilm actuators are also considered. The sound power with double-layered actuator becomes larger than that with single-layered actuator as expected.

  • PDF

Optimal Design of Inverse Electromagnetic Problems with Uncertain Design Parameters Assisted by Reliability and Design Sensitivity Analysis

  • Ren, Ziyan;Um, Doojong;Koh, Chang-Seop
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.266-272
    • /
    • 2014
  • In this paper, we suggest reliability as a metric to evaluate the robustness of a design for the optimal design of electromagnetic devices, with respect to constraints under the uncertainties in design variables. For fast numerical efficiency, we applied the sensitivity-assisted Monte Carlo simulation (S-MCS) method to perform reliability calculation. Furthermore, we incorporated the S-MCS with single-objective and multi-objective particle swarm optimization algorithms to achieve reliability-based optimal designs, undertaking probabilistic constraint and multi-objective optimization approaches, respectively. We validated the performance of the developed optimization algorithms through application to the optimal design of a superconducting magnetic energy storage system.