• 제목/요약/키워드: single-nucleotide polymorphisms

검색결과 753건 처리시간 0.026초

Application of Random Forests to Association Studies Using Mitochondrial Single Nucleotide Polymorphisms

  • Kim, Yoon-Hee;Kim, Ho
    • Genomics & Informatics
    • /
    • 제5권4호
    • /
    • pp.168-173
    • /
    • 2007
  • In previous nuclear genomic association studies, Random Forests (RF), one of several up-to-date machine learning methods, has been used successfully to generate evidence of association of genetic polymorphisms with diseases or other phenotypes. Compared with traditional statistical analytic methods, such as chi-square tests or logistic regression models, the RF method has advantages in handling large numbers of predictor variables and examining gene-gene interactions without a specific model. Here, we applied the RF method to find the association between mitochondrial single nucleotide polymorphisms (mtSNPs) and diabetes risk. The results from a chi-square test validated the usage of RF for association studies using mtDNA. Indexes of important variables such as the Gini index and mean decrease in accuracy index performed well compared with chi-square tests in favor of finding mtSNPs associated with a real disease example, type 2 diabetes.

Single Nucleotide Polymorphisms in STAT3 and STAT4 and Risk of Hepatocellular Carcinoma in Thai Patients with Chronic Hepatitis B

  • Chanthra, Nawin;Payungporn, Sunchai;Chuaypen, Natthaya;Piratanantatavorn, Kesmanee;Pinjaroen, Nutcha;Poovorawan, Yong;Tangkijvanich, Pisit
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8405-8410
    • /
    • 2016
  • Hepatitis B virus (HBV) infection is the leading cause of hepatocellular carcinoma (HCC) development. Recent studies demonstrated that single nucleotide polymorphisms (SNPs) rs2293152 in signal transducer and activator of transcription 3 (STAT3) and rs7574865 in signal transducer and activator of transcription 4 (STAT4) are associated with chronic hepatitis B (CHB)-related HCC in the Chinese population. We hypothesized that these polymorphisms might be related to HCC susceptibility in Thai population as well. Study subjects were divided into 3 groups consisting of CHB-related HCC (n=192), CHB without HCC (n=200) and healthy controls (n=190). The studied SNPs were genotyped using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The results showed that the distribution of different genotypes for both polymorphisms were in Hardy-Weinberg equilibrium (P>0.05). Our data demonstrated positive association of rs7574865 with HCC risk when compared to healthy controls under an additive model (GG versus TT: odds ratio (OR)=2.07, 95% confidence interval (CI)=1.06-4.03, P=0.033). This correlation remained significant under allelic and recessive models (OR=1.46, 95% CI=1.09-1.96, P=0.012 and OR=1.71, 95% CI=1.13-2.59, P=0.011, respectively). However, no significant association between rs2293152 and HCC development was observed. These data suggest that SNP rs7574865 in STAT4 might contribute to progression to HCC in the Thai population.

Synonymous Codon Usage Controls Various Molecular Aspects

  • Im, Eu-Hyun;Choi, Sun Shim
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.123-127
    • /
    • 2017
  • Synonymous sites are generally considered to be functionally neutral. However, there are recent contradictory findings suggesting that synonymous alleles might have functional roles in various molecular aspects. For instance, a recent study demonstrated that synonymous single nucleotide polymorphisms have a similar effect size as nonsynonymous single nucleotide polymorphisms in human disease association studies. Researchers have recognized synonymous codon usage bias (SCUB) in the genomes of almost all species and have investigated whether SCUB is due to random nucleotide compositional bias or to natural selection of any functional exposure generated by synonymous mutations. One of the most prominent observations on the non-neutrality of synonymous codons is the correlation between SCUB and levels of gene expression, such that highly expressed genes tend to have a higher preference toward so-called optimal codons than lowly expressed genes. In relation, it is known that amounts of cognate tRNAs that bind to optimal codons are significantly higher than the amounts of cognate tRNAs that bind to non-optimal codons in genomes. In the present paper, we review various functions that synonymous codons might have other than regulating expression levels.

Development and Validation of Single Nucleotide Polymorphism (SNP) Markers from an Expressed Sequence Tag (EST) Database in Olive Flounder (Paralichthys olivaceus)

  • Kim, Jung Eun;Lee, Young Mee;Lee, Jeong-Ho;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil
    • 한국발생생물학회지:발생과생식
    • /
    • 제18권4호
    • /
    • pp.275-286
    • /
    • 2014
  • To successful molecular breeding, identification and functional characterization of breeding related genes and development of molecular breeding techniques using DNA markers are essential. Although the development of a useful marker is difficult in the aspect of time, cost and effort, many markers are being developed to be used in molecular breeding and developed markers have been used in many fields. Single nucleotide polymorphisms (SNPs) markers were widely used for genomic research and breeding, but has hardly been validated for screening functional genes in olive flounder. We identified single nucleotide polymorphisms (SNPs) from expressed sequence tag (EST) database in olive flounder; out of a total 4,327 ESTs, 693 contigs and 514 SNPs were detected in total EST, and these substitutions include 297 transitions and 217 transversions. As a result, 144 SNP markers were developed on the basis of 514 SNP to selection of useful gene region, and then applied to each of eight wild and culture olive flounder (total 16 samples). In our experimental result, only 32 markers had detected polymorphism in sample, also identified 21 transitions and 11 transversions, whereas indel was not detected in polymorphic SNPs. Heterozygosity of wild and cultured olive flounder using the 32 SNP markers is 0.34 and 0.29, respectively. In conclusion, we identified SNP and polymorphism in olive flounder using newly designed marker, it supports that developed markers are suitable for SNP detection and diversity analysis in olive flounder. The outcome of this study can be basic data for researches for immunity gene and characteristic with SNP.

Mining Single Nucleotide Polymorphisms from Silkworm EST Data

  • Qingyou, Xia;Tingcai, Cheng;Jifeng, Qian;Zheyang, Zhou;Zhonghuai, Xiang
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.23-23
    • /
    • 2003
  • We made use of 81, 635 expressed sequence tags (ESTs) derived from 12 different cDNA libraries of Bombyx mori to identify high-quality candidate single nucleotide polymorphisms (SNPs). By PHRAP assembling, we obtained 12, 980 contigs containing 11, 531 contigs assembled by more than one reads. From 117 contig sequences, which were assembled by 1, 576 high-quality reads base-called with PHRED, we identified 101 candidate SNPs and 27 single base insertions/deletions based on a neighborhood quality standard(NQS) of SNP. (omitted)

  • PDF

MDM2 T309G has a Synergistic Effect with P21 ser31arg Single Nucleotide Polymorphisms on the Risk of Acute Myeloid Leukemia

  • Ebid, Gamal T.;Sedhom, Iman A.;El-Gammal, Mosaad M.;Moneer, Manar M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4315-4320
    • /
    • 2012
  • Background: The P53 tumor suppressor gene plays a pivotal role in maintaining cellular homeostasis by preventing the propagation of genome mutations. P53 in its transcriptionally active form is capable of activating distinct target genes that contribute to either apoptosis or growth arrest, like P21. However, the MDM2 gene is a major negative regulator of P53. Single nucleotide polymorphisms (SNP) in codon Arg72Pro of P53 results in impairment of the tumor suppressor activity of the gene. A similar effect is caused by a SNP in codon 31 of P21. In contrast, a SNP in position 309 of MDM2 results in increased expression due to substitution of thymine by guanine. All three polymorphisms have been associated with increased risk of tumorigenesis. Aim of the study: We aimed to study the prevalence of SNPs in the P53 pathway involving the three genes, P53, P21 and MDM2, among acute myeloid leukemia (AML) patients and to compare it to apparently normal healthy controls for assessment of impact on risk. Results: We found that the P21 ser31arg heterozygous polymorphism increases the risk of AML (P value=0.017, OR=2.946, 95% CI=1.216-7.134). Although the MDM2 309G allele was itself without affect, it showed a synergistic effect with P21 ser/arg polymorphism (P value=0.003, OR=6.807, 95% CI=1.909-24.629). However, the MDM2 309T allele abolish risk effect of the P21 polymorphic allele (P value=0.71). There is no significant association of P53 arg72pro polymorphism on the risk of AML. Conclusion: We suggest that SNPs in the P53 pathway, especially the P21 ser31arg polymorphism and combined polymorphisms especially the P21/MDM2 might be genetic susceptibility factors in the pathogenesis of AML.

Identification of Single Nucleotide Polymorphisms in PRNP Gene of Korean Native Goats

  • Hoque, Md. Rashedul;Yu, Seong-Lan;Yeon, Seong-Heum;Lee, Jun-Heon
    • Journal of Animal Science and Technology
    • /
    • 제51권6호
    • /
    • pp.453-458
    • /
    • 2009
  • Prion protein (PRNP) is known to be a causative protein for transmissible spongiform encephalopathy (TSE), a disease occurring in human and animals. Previous results indicate that the genetic variability can affect the resistance and susceptibility of goat scrapie and can give the guideline for reducing the risk of this disease. Until now, 35 single nucleotide polymorphisms (SNPs) were identified in goat PRNP gene from many countries such as Great Britain, Italy, United States of America and Asian countries etc. In this study, SNPs in PRNP gene have been investigated to research the PRNP variations and their possible TSE risks in 60 Korean native goats. Based on the sequencing results, we identified four SNPs and three of those polymorphisms (G126A, C414T and C718T) were synonymous and the A428G polymorphism was non-synonymous which changes the amino acid histidine to arginine. Previously, all of these four SNPs were identified in Asian native goats. Specifically, five polymorphisms were identified in Asian native goats and two of them (G126A and C414T) were silent mutations, and the other SNPs (T304G, A428G and T718C) caused amino acid changes (W102G, H143R and S240P). Comparing with SNP results from other breeds, this study is an initial step to understand resistance and susceptibility of this disease in Korean native goats.