• Title/Summary/Keyword: single-nucleotide polymorphisms

Search Result 753, Processing Time 0.022 seconds

Effect of the Fatty Acid Synthase Gene for Beef Quantity Traits in Hanwoo Breeding Stock (한우 Fatty Acid Synthase (FASN) 유전자 반수체형의 후대검정우 육량 및 육질에 미치는 영향)

  • Kim, Sang-Wook;Lee, Jun-Heon;Kim, Jin-Ho;Won, You-Seog;Kim, Nae-Soo;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.52 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • A previous study has shown that the g.17924G>A polymorphism of fatty acid synthase (FASN) is associated with unsaturated fatty acid composition in the Hanwoo beef, hence this study was conducted to evaluate the effect of single nucleotide polymorphisms (SNPs) within FASN gene on the selection phenotypes of Hanwoo breeding stock. A total of 925 progeny test steers were used to genotype g.11280G>A, g.13125T>C, and g.17924G>A polymorphisms and significant associations were found among g.11280G>A, g.17924G>A, and carcass traits, such as carcass weight, backfat thickness, and beef quantity index. No significant association was found between g.13125T>C and carcass traits. Although the degree of linkage disequilibrium (LD) was not strong among g.11280G>A, g.13125T>C, and g.17924G>A in the LD analysis, four major haplotype classes were formed with the genotypic information within the FASN gene; the frequencies of the halpotypeswere -GCG-[0.378], -ATG-[0.301], -GTA-[0.191], and -ACG-[0.063], respectively. Phenotypic association was performed among these haploptypes, and the haplotype 2 (-ATG-)was significantly associated with higher carcass weight when compared to the other haplotypes, i.e. haplotype 1 (-GCG-) and haplotype 3 (-GTA-). A copy number of the FASN haplotype 3 (-GTA-) had also a significant association with carcass weight of subjects. In conclusion, it was observed that two polymorphisms (g.11280G>A and g.17924G>A) and their haplotypes within the FASN gene are consistently associated with carcass traits. Therefore, it is desirable to use the FASN polymorphisms for pre-selection program as genetic marker with improved carcass yield and beef quality of the Hanwoo sire at the Hanwoo Improvement Center as well as for commercial Hanwoo producers, the FASN genotypic information can be used for a part of selecting Hanwoo dam for superior calf production.

Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses (말에서 Dopamine Receptor D4 유전자의 변이 특성 분석)

  • Choi, Jae-Young;Choi, Yeonju;Lee, Jongan;Shin, Sang-Min;Yoon, Minjung;Kang, Yong-Jun;Shin, Moon-Cheol;Yoo, Ji-Hyun;Kim, Hyeonah;Cho, In-Cheol;Yang, Byoung-Chul;Kim, Nam-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • This study was conducted to analyze the genetic polymorphisms of dopamine receptor D4 (DRD4) in horse breeds and its association with substrate characteristics in Jeju crossbreds (Jeju Horse × Thoroughbred). Polymorphisms in DRD4 are candidate genes associated with temperament in various mammals, including humans. Single nucleotide polymorphism (SNP) G292A in the exon 3 region of the horse DRD4 has a reported association with curiosity and vigilance in thoroughbreds. Sanger sequencing was used to identify polymorphisms of the mutations in DRD4 in three horse breeds. The SNP frequency in Jeju horses was significantly different from the frequency in other breeds. Character evaluation, conducted in the Jeju crossbreds and scored using a temperament test and contact test, revealed a high correlation between each test. Comparison of the polymorphism in the DRD4 of horses and the results of the character evaluation revealed lower scores for all temperaments in horses carrying allele A. Comparison of the SNP of G292A and blood dopamine levels in Jeju crossbreds showed 2.87 times higher levels for the GA type than for the GG type. This study identified an association between DRD4 polymorphism and various test methods for evaluating horse temperament and levels of neurotransmitters. Further research could validate the use of this gene as a genetic marker for character evaluation.

Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle (Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석)

  • An, Na-Rae;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Jang, Gul-Won;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1255-1261
    • /
    • 2018
  • Whole genome analysis have been made possible with the development of DNA sequencing technologies and discovery of many single nucleotide polymorphisms (SNPs). Large number of SNP can be analyzed with SNP chips, since SNPs of human as well as livestock genomes are available. Among the various missing nucleotide imputation programs, Minimac3 software is suggested to be highly accurate, with a simplified workflow and relatively fast. In the present study, we used Minimac3 program to perform genomic missing value substitution 1,226 animals 770K SNP chip and imputing missing SNPs with next generation sequencing data from 311 animals. The accuracy on each chromosome was about 94~96%, and individual sample accuracy was about 92~98%. After imputation of the genotypes, SNPs with R Square ($R^2$) values for three conditions were 0.4, 0.6, and 0.8 and the percentage of SNPs were 91%, 84%, and 70% respectively. The differences in the Minor Allele Frequency gave $R^2$ values corresponding to seven intervals (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3). (0.3, 0.4) and (0.4, 0.5) of 64~88%. The total analysis time was about 12 hr. In future SNP chip studies, as the size and complexity of the genomic datasets increase, we expect that genomic imputation using Minimac3 can improve the reliability of chip data for Hanwoo discrimination.

Evidence of genome duplication revealed by sequence analysis of multi-loci expressed sequence tagesimple sequence repeat bands in Panax ginseng Meyer

  • Kim, Nam-Hoon;Choi, Hong-Il;Kim, Kyung Hee;Jang, Woojong;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • v.38 no.2
    • /
    • pp.130-135
    • /
    • 2014
  • Background: Panax ginseng, the most famous medicinal herb, has a highly duplicated genome structure. However, the genome duplication of P. ginseng has not been characterized at the sequence level. Multiple band patterns have been consistently observed during the development of DNA markers using unique sequences in P. ginseng. Methods: We compared the sequences of multiple bands derived from unique expressed sequence tagsimple sequence repeat (EST-SSR) markers to investigate the sequence level genome duplication. Results: Reamplification and sequencing of the individual bands revealed that, for each marker, two bands around the expected size were genuine amplicons derived from two paralogous loci. In each case, one of the two bands was polymorphic, showing different allelic forms among nine ginseng cultivars, whereas the other band was usually monomorphic. Sequences derived from the two loci showed a high similarity, including the same primer-binding site, but each locus could be distinguished based on SSR number variations and additional single nucleotide polymorphisms (SNPs) or InDels. A locus-specific marker designed from the SNP site between the paralogous loci produced a single band that also showed clear polymorphism among ginseng cultivars. Conclusion: Our data imply that the recent genome duplication has resulted in two highly similar paralogous regions in the ginseng genome. The two paralogous sequences could be differentiated by large SSR number variations and one or two additional SNPs or InDels in every 100 bp of genic region, which can serve as a reliable identifier for each locus.

Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population

  • Li, Cong;Cai, Wentao;Liu, Shuli;Zhou, Chenghao;Cao, Mingyue;Yin, Hongwei;Sun, Dongxiao;Zhang, Shengli;Loor, Juan J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1725-1731
    • /
    • 2020
  • Objective: An initial RNA-Sequencing study revealed that UDP-galactose-4-epimerase (GALE) was one of the most promising candidates for milk protein concentration in Chinese Holstein cattle. This enzyme catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. To further validate the genetic effect of GALE on milk protein traits, genetic variations were identified, and genotypes-phenotypes associations were performed. Methods: The entire coding region and the 5'-regulatory region (5'-UTR) of GALE were re-sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed linear animal model with a population encompassing 1,027 Chinese Holstein cows. Results: A total of three variants in GALE were identified, including two novel variants (g.2114 A>G and g.2037 G>A) in the 5'-UTR and one previously reported variant (g.3836 G>C) in an intron. All three single nucleotide polymorphisms (SNPs) were associated with milk yield (p<0.0001), fat yield (p = 0.0006 to <0.0001), protein yield (p = 0.0232 to <0.0001) and protein percentage (p<0.0001), while no significant associations were detected between the SNPs and fat percentage. A strong linkage disequilibrium (D' = 0.96 to 1.00) was observed among all three SNPs, and a 5 Kb haplotype block involving three main haplotypes with GAG, AGC, and AGG was formed. The results of haplotype association analyses were consistent with the results of single locus association analysis (p<0.0001). The phenotypic variance ratio above 3.00% was observed for milk protein yield that was explained by SNP-g.3836G >C. Conclusion: Overall, our findings provided new insights into the polymorphic variations in bovine GALE gene and their associations with milk protein concentration. The data indicate their potential uses for marker-assisted breeding or genetic selection schemes.

Investigation of PCR-RFLPs within Major Histocompatibility Complex B-G Genes Using Two Restriction Enzymes in Eight Breeds of Chinese Indigenous Chickens

  • Xu, R.F.;Li, K.;Chen, G.H.;Qiang, B.Y.Z.;Mo, D.L.;Fan, B.;Li, C.C.;Yu, M.;Zhu, M.J.;Xiong, T.A.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.942-948
    • /
    • 2005
  • New polymorphism of major histocompatibility complex B-G genes was investigated by amplification and digestion of a 401bp fragment including intron 1 and exon 2 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique with two restriction enzymes of Msp I and Tas I in eight breeds of Chinese indigenous chickens and one exotic breed. In the fragment region of the gene, three novel single nucleotide polymorphisms (SNPs) were detected at the two restriction sites. We found the transition of two nucleotides of A294G and T295C occurred at Tas I restriction site, and consequently led to a non-synonymous substitution of asparagine into serine at position 54 within the deduced amino acid sequence of immunoglobulin variable-region-like domain encoded by the exon 2 of B-G gene. It was observed at rare frequency that a single mutation of A294G occurring at the site, also caused an identical substitution of amino acid, asparagine 54-to-serine, to that we described previously. And the transversion of G319C at Msp I site led to a non-synonymous substitution, glutamine 62-to-histidine. The new alleles and allele frequencies identified by the PCR-RFLP method with the two enzymes were characterized, of which the allele A and B frequencies at Msp I and Tas I loci were given disequilibrium distribution either in the eight Chinese local breeds or in the exotic breed. By comparison, allele A at Msp I locus tended to be dominant, while, the allele B at Tas I locus tended to be dominant in all of the breeds analyzed. In Tibetan chickens, the preliminary association analysis revealed that no significant difference was observed between the different genotypes identified at the Msp I and Tas I loci and the laying performance traits, respectively.

Distinguishing the Korean Silage Corn Varieties through Development of PCR-Based SNP Marker (SNP마커 개발을 통한 사료용 옥수수 품종판별)

  • Kim, Sang Gon;Lee, Jin-Seok;Bae, Hwan Hee;Kim, Jung-Tae;Son, Beom-Young;Baek, Seong-Bum
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.168-175
    • /
    • 2017
  • Single nucleotide polymorphisms (SNP) markers allow rapid screening of crop varieties in early growth stages. We developed a modified SNP PCR procedure for assaying SNPs in maize. For SNP marker development, we chosen 200 SNP sites from MaizeGDB database, and designed two base pair mismatch primers based on putative SNP site of B73 genome sequence. PCR products size was from 200 to 500 bp or was not shown in the case of SNP site existing in Korean silage corns. Using previously discovered 16 primer sets, we investigated distinctness of 50 silage F1 hybrid corns including 10 Korean silage corns developed by RDA such as Gangdaok, Kwangpyeongok, Dapyeongok, Andaok, Yanganok, Singwangok, Jangdaok, Cheongdaok, Pyeonggangok, and Pyeonganok as well as 40 foreign commercial silage corns. From cluster analysis, we confirmed that 10 Korean silage F1 hybrid corns were clearly distinguished except for Singwangok, P1395, and several foreign commercial corns, and selected minimum SNP primer combination for Gangdaok, Jangdaok, Pyeonggangok, and Pyeonganok. Therefore, development of SNP marker sets might be faster, cheaper, and feasible breed discrimination method through simple PCR and agarose gel electrophoresis.

Association between Antipsychotic-Induced Restless Legs Syndrome and Glutathione S-Transferase Gst-M1, Gst-T1 and Gst-P1 Gene Polymorphisms (Glutathione S-Transferase (GST) 유전자 다형성과 항정신병약물로 유발된 하지불안증후군의 연관 연구)

  • Kang, Seung-Gul;Park, Young-Min;Kim, Leen;Lee, Heon-Jeong
    • Sleep Medicine and Psychophysiology
    • /
    • v.22 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • Objectives: The pathophysiology of restless legs syndrome (RLS) has not been fully elucidated. Oxidative stress might play a role in the development of RLS and other antipsychotic-induced side effects such as tardive dyskinesia. In the present study, we investigated whether the glutathione S-transferase (GST) gene polymorphisms are associated with antipsychotic-induced RLS in schizophrenia. Methods: We assessed antipsychotic-induced RLS symptoms in 190 Korean schizophrenic patients using the diagnostic criteria of the International Restless Legs Syndrome Study Group. The GST-M1, GST-T1 and GST-P1 loci were analyzed using PCR-based methods. Results: We divided the subjects into 2 groups: those with RLS symptoms (n = 96) and those without RLS symptoms (n = 94). There were no significant differences in the distributions of the GST-M1 genotypes (${\chi}^2=3.56$, p = 0.059), GST-T1 (${\chi}^2=0.51$, p = 0.476) and GST-P1 (${\chi}^2=0.57$, p = 0.821) between the 2 groups. Comparison of the RLS score among genotypes of the GST-M1 (t = -1.54, p = 0.125), GST-T1 (t = -0.02, p = 0.985) and GST-P1 (F = 0.58, p = 0.560) revealed no significant difference. Conclusion: These data suggest that GST gene polymorphisms do not confer increased susceptibility to RLS symptoms in schizophrenic patients. Future studies are necessary to evaluate the possible influences of other candidate genes involved in the reactive oxygen species system.

Single Nucleotide Polymorphisms (SNPs) Discovery in GHSR Gene and Their Association Analysis with Economic Traits in Korean Native Chickens (GHSR 유전자 내 유전변이의 탐색과 한국재래계의 성장 및 산란 특성에 미치는 연관성 분석)

  • Choi, So-Young;Hong, Min-Wook;Yang, Song-Yi;Kim, Chong-Dae;Jeong, Dong Kee;Hong, Yeong Ho;Lee, Sung-Jin
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2016
  • Recently, it was reported that certain polymorphisms in the growth hormone secretagogue receptor gene (GHSR) are associated with the growth of chickens. However, the correlation between GHSR polymorphisms and economic traits has not been investigated in Korean native chickens (KNCs). Therefore, the objective of this study was to confirm the suitability of the GHSR gene as a candidate for genomic selection and identify a genetic marker for KNCs. A total of 220 KNCs from six breeds raised at the National Institute of Animal Science were genotyped for the c.739+726 SNP in the GHSR gene using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), and the sequence for a subset of 30 birds was analyzed using direct sequencing. The association between the SNP genotypes and the economic traits of the KNCs was analyzed using the statistical package for the social science (SPSS) software program. The association analysis between the c.739+726T>C SNP and economic traits revealed that the SNP was significantly associated with body weight at 150 and 270 days (BW150 and BW270, respectively) in all KNCs (p<0.01), BW150 in KNC (Gary) (p<0.05), and egg production number in KNC (White, p<0.05). In addition, the SNPs discovered using direct sequencing (513A>G, 517A>T) had a significant effect on the body weight and egg production traits (p<0.05). In conclusion, these results might be useful as a basis for studies on the improvement of KNC breeds. Furthermore, these results suggest that the SNPs (c.739+726T>C, 513A>G, and 517A>T) located in the GHSR gene could be useful molecular genetic markers for KNCs.

Role of MYH Polymorphisms in Sporadic Colorectal Cancer in China: A Case-control, Population-based Study

  • Yang, Liu;Huang, Xin-En;Xu, Lin;Zhou, Jian-Nong;Yu, Dong-Sheng;Zhou, Xin;Li, Dong-Zheng;Guan, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6403-6409
    • /
    • 2013
  • Purpose: Biallelic germline variants of the 8-hydroxyguanine (8-OG) repair gene MYH have been associated with colorectal neoplasms that display somatic $G:C{\rightarrow}T:A$ transversions. However, the effect of single germline variants has not been widely studied, prompting the present investigation of monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC) in a Chinese population. Patients and Methods: Between January 2006 and December 2012, 400 cases of sporadic CRC and 600 age- and sex-matched normal blood donors were screened randomly for 7 potentially pathogenic germline MYH exons using genetic testing technology. Variants of heterozygosity at the MYH locus were assessed in both sporadic cancer patients and healthy controls. Univariate and multivariate analyses were performed to determine risk factors for cancer onset. Results: Five monoallelic single nucleotide polymorphisms (SNPs) were identified in the 7 exon regions of MYH, which were detected in 75 (18.75%) of 400 CRC patients as well as 42 (7%) of 600 normal controls. The region of exon 1 proved to be a linked polymorphic region for the first time, a triple linked variant including exon 1-316 $G{\rightarrow}A$, exon 1-292 $G{\rightarrow}A$ and intron 1+11 $C{\rightarrow}T$, being identified in 13 CRC patients and 2 normal blood donors. A variant of base replacement, intron 10-2 $A{\rightarrow}G$, was identified in the exon 10 region in 21 cases and 7 controls, while a similar type of variant in the exon 13 region, intron 13+12 $C{\rightarrow}T$, was identified in 8 cases and 6 controls. Not the only but a newly missense variant in the present study, p. V463E (Exon 14+74 $T{\rightarrow}A$), was identified in exon 14 in 6 patients and 1 normal control. In exon 16, nt. 1678-80 del GTT with loss of heterozygosity (LOH) was identified in 27 CRC cases and 26 controls. There was no Y165C in exon 7 or G382D in exon 14, the hot-spot variants which have been reported most frequently in Caucasian studies. After univariate analysis and multivariate analysis, the linked variant in exon 1 region (p=0.002), intron 10-2 $A{\rightarrow}G$ (p=0.004) and p. V463E (p=0.036) in the MYH gene were selected as 3 independent risk factors for CRC. Conclusions: According to these results, the linked variant in Exon 1 region, Intron 10-2 $A{\rightarrow}G$ of base replacement and p. V463E of missense variant, the 3 heterozygosity variants of MYH gene in a Chinese population, may relate to the susceptibility to sporadic CRC. Lack of the hot-spot variants of Caucasians in the present study may due to the ethnic difference in MYH gene.