• Title/Summary/Keyword: single-nucleotide polymorphisms

Search Result 753, Processing Time 0.02 seconds

Sequence characterization and polymorphism of melanocortin 1 receptor gene in some goat breeds with different coat color of Mongolia

  • Ganbold, Onolragchaa;Manjula, Prabuddha;Lee, Seung-Hwan;Paek, Woon Kee;Seo, Dongwon;Munkhbayar, Munkhbaatar;Lee, Jun Heon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.939-948
    • /
    • 2019
  • Objective: Extension and Agouti loci play a key role for proportions of eumelanin and pheomelanin in determining coat color in several species, including goat. Mongolian goats exhibit diverse types of coat color phenotypes. In this study, investigation of the melanocortin 1 receptor (MC1R) coding region in different coat colors in Mongolian goats was performed to ascertain the presence of the extension allele. Methods: A total of 105 goat samples representing three goat breeds were collected for this study from middle Mongolia. A 938 base pair (bp) long coding region of the MC1R gene was sequenced for three different breeds with different coat colors (Gobi Gurwan Saikhan: complete black, Zalaa Jinstiin Tsagaan: complete white, Mongolian native goat: admixture of different of coat colors). The genotypes of these goats were obtained from analyzing and comparing the sequencing results. Results: A total of seven haplotypes defined by five substitution were identified. The five single nucleotide polymorphisms included two synonymous mutations (c.183C>T and c.489G>A) and three missense (non-synonymous) mutations (c.676A>G, c.748T>G, and c.770T>A). Comparison of genotypes frequencies of two common missense mutions using chi-sqaure ($x^2$) test revealed significant differences between coat color groups (p<0.001). A logistic regression analysis additionally suggested highly significant association between genotypes and variation of black versus white uniform combination. Alternatively, most investigated goats (60.4%) belonged to H2 (TGAGT) haplotype. Conclusion: According to the findings obtained in this study on the investigated coat colors, mutations in MC1R gene may have the crucial role for determining eumelanin and pheomelanin phenotypes. Due to the complication of coat color phenotype, more detailed investigation needed.

Complete Genome Sequencing of Bacillus velezensis WRN014, and Comparison with Genome Sequences of other Bacillus velezensis Strains

  • Wang, Junru;Xing, Juyuan;Lu, Jiangkun;Sun, Yingjiao;Zhao, Juanjuan;Miao, Shaohua;Xiong, Qin;Zhang, Yonggang;Zhang, Guishan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.794-808
    • /
    • 2019
  • Bacillus velezensis strain WRN014 was isolated from banana fields in Hainan, China. Bacillus velezensis is an important member of the plant growth-promoting rhizobacteria (PGPR) which can enhance plant growth and control soil-borne disease. The complete genome of Bacillus velezensis WRN014 was sequenced by combining Illumina Hiseq 2500 system and Pacific Biosciences SMRT high-throughput sequencing technologies. Then, the genome of Bacillus velezensis WRN014, together with 45 other completed genome sequences of the Bacillus velezensis strains, were comparatively studied. The genome of Bacillus velezensis WRN014 was 4,063,541bp in length and contained 4,062 coding sequences, 9 genomic islands and 13 gene clusters. The results of comparative genomic analysis provide evidence that (i) The 46 Bacillus velezensis strains formed 2 obviously closely related clades in phylogenetic trees. (ii) The pangenome in this study is open and is increasing with the addition of new sequenced genomes. (iii) Analysis of single nucleotide polymorphisms (SNPs) revealed local diversification of the 46 Bacillus velezensis genomes. Surprisingly, SNPs were not evenly distributed throughout the whole genome. (iv) Analysis of gene clusters revealed that rich gene clusters spread over Bacillus velezensis strains and some gene clusters are conserved in different strains. This study reveals that the strain WRN014 and other Bacillus velezensis strains have potential to be used as PGPR and biopesticide.

Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis

  • Sheet, Sunirmal;Krishnamoorthy, Srikanth;Park, Woncheoul;Lim, Dajeong;Park, Jong-Eun;Ko, Minjeong;Choi, Bong-Hwan
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.765-776
    • /
    • 2020
  • The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case-control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.

Genome-wide association analysis of nine reproduction and morphological traits in three goat breeds from Southern China

  • Xiaoyan, Sun;Jing, Jiang;Gaofu, Wang;Peng, Zhou;Jie, Li;Cancan, Chen;Liangjia, Liu;Nianfu, Li;Yuanyou, Xia;Hangxing, Ren
    • Animal Bioscience
    • /
    • v.36 no.2
    • /
    • pp.191-199
    • /
    • 2023
  • Objective: This study aimed to investigate the significant single nucleotide polymorphisms (SNPs) and genes associated with nine reproduction and morphological traits in three breed populations of Chinese goats. Methods: The genome-wide association of nine reproduction and morphological traits (litter size, nipple number, wattle, skin color, coat color, black dorsal line, beard, beard length, and hind leg hair) were analyzed in three Chinese native goat breeds (n = 336) using an Illumina Goat SNP50 Beadchip. Results: A total of 17 genome-wide or chromosome-wide significant SNPs associated with one reproduction trait (litter size) and six morphological traits (wattle, coat color, black dorsal line, beard, beard length, and hind leg hair) were identified in three Chinese native goat breeds, and the candidate genes were annotated. The significant SNPs and corresponding putative candidate genes for each trait are as follows: two SNPs located on chromosomes 6 (CSN3) and 24 (TCF4) for litter size trait; two SNPs located on chromosome 9 (KATNA1) and 1 (UBASH3A) for wattle trait; three SNPs located on chromosome 26 (SORCS3), 24 (DYM), and 20 (PDE4D) for coat color trait; two SNPs located on chromosome 18 (TCF25) and 15 (CLMP) for black dorsal line trait; four SNPs located on chromosome 8, 2 (PAX3), 5 (PIK3C2G), and 28 (PLA2G12B and OIT3) for beard trait; one SNP located on chromosome 18 (KCNG4) for beard length trait; three SNPs located on chromosome 17 (GLRB and GRIA2), 28 (PGBD5), and 4 for hind leg hair trait. In contrast, there were no SNPs identified for nipple number and skin color. Conclusion: The significant SNPs or genes identified in this study provided novel insights into the genetic mechanism underlying important reproduction and morphological traits of three local goat breeds in Southern China as well as further potential applications for breeding goats.

The Study of DNA markers to identify of Allium sativum L. (한약재 마늘(Allium sativum L.)의 식별을 위한 유전자 감식연구)

  • Son, OGyeong;Seo, Bu-II;Lee, Seon-Ha;Park, Seon-Joo
    • The Korea Journal of Herbology
    • /
    • v.29 no.1
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : This study was carried out to identify DNA markers of "Allium sativum" be circulated from Korea and China, which is difficult to discriminate from morphological characters because of fragmental materials of bulb. That is, all these studies focused on the discrimination of Allium sativum L. But these day, Chinese A. sativum was in circulated Korean A. sativum in Korean medicine markets. Therefore, the purpose of our study was to develop molecular markers for discrimination between Korean A. sativum and imports from China. Methods : Materials were collected randomly from a markets in Korea and China and be analyzed with matK, ndhF and trnL-F regions of chloroplast DNA (cpDNA). We collected 45 A. sativum individuals from Korean and Chinese medicine markets, in 2013. Results : As a results, matK and ndhF regions of cpDNA was shown to be identify, Species that grow from warm place and cold place can divide as five SNP (Single nucleotide polymorphisms) markers in matK and ndhF genes. Also, in trnL-F regions, found one SNP that can divide Korean A. sativum and Chinese A. sativum. Conclusions : From the analysis of matK and ndhF regions of cpDNA, we presumed that three markers of cpDNA were found by useful marker that can distinguish Korean, Chinese, Warm place type, and Cold place type. Individual differences of Korean and Chinese was thought that appear in geographical difference and genetic difference by environment for long hour even if same species.

Genetic variants of the growth differentiation factor 8 affect body conformation traits in Chinese Dabieshan cattle

  • Zhao, Shuanping;Jin, Hai;Xu, Lei;Jia, Yutang
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.517-526
    • /
    • 2022
  • Objective: The growth differentiation factor 8 (GDF8) gene plays a key role in bone formation, resorption, and skeletal muscle development in mammals. Here, we studied the genetic variants of GDF8 and their contribution to body conformation traits in Chinese Dabieshan cattle. Methods: Single nucleotide polymorphisms (SNPs) were identified in the bovine GDF8 gene by DNA sequencing. Phylogenetic analysis, motif analysis, and genetic diversity analysis were conducted using bioinformatics software. Association analysis between five SNPs, haplotype combinations, and body conformation traits was conducted in 380 individuals. Results: The GDF8 was highly conserved in seven species, and the GDF8 sequence of cattle was most similar to the sequences of sheep and goat based on the phylogenetic analysis. The motif analysis showed that there were 12 significant motifs in GDF8. Genetic diversity analysis indicated that the polymorphism information content of the five studied SNPs was within 0.25 to 0.5. Haplotype analysis revealed a total of 12 different haplotypes and those with a frequency of <0.05 were excluded. Linkage disequilibrium analysis showed a strong linkage (r2>0.330) between the following SNPs: g.5070C>A, g.5076T>C, and g.5148A>C. Association analysis indicated these five SNPs were associated with some of the body conformation traits (p<0.05), and the animals with haplotype combination H1H1 (-GGGG CCTTAA-) had greater wither height, hip height, heart girth, abdominal girth, and pin bone width than the other (p<0.05) Dabieshan cattle. Conclusion: Overall, our results indicate that the genetic variants of GDF8 affected the body conformation traits of Chinese Dabieshan cattle, and the GDF8 gene could make a strong candidate gene in Dabieshan cattle breeding programs.

Genetic Association Study of the Common Genetic Variation of Early Growth Response 3 Gene With Bipolar Disorder in Korean Population (Early Growth Response 3 유전자와 양극성 장애 간 유전연합 연구)

  • Jang, Moonyoung;Ahn, Yong Min;Kim, Yong Sik;Kim, Se Hyun
    • Korean Journal of Biological Psychiatry
    • /
    • v.29 no.2
    • /
    • pp.33-39
    • /
    • 2022
  • Objectives The early growth response 3 (EGR3) gene located in chromosome 8p21.3 is one of the susceptibility loci in many psychiatric disorders. EGR3 gene plays critical roles in signal transduction in the brain, which is involved in neuronal plasticity, neuronal development, learning, memory, and circadian rhythms. Recent studies have suggested EGR3 as a potential susceptibility gene for bipolar disorder (BPD). However, this requires further replication with an independent sample set. Methods To investigate the genetic role of EGR3 in Korean patients, we genotyped six single-nucleotide polymorphisms (SNPs) in the chromosome region of EGR3 in 1076 Korean BPD patients and 773 healthy control subjects. Results Among the six examined SNPs of EGR3 (rs17088531, rs1996147, rs3750192, rs35201266, rs7009708, rs1008949), SNP rs35201266, rs7009708, rs1008949 showed a significant association with BPD (p = 0.0041 for rs35201266 and BPD2, p = 0.0074 for rs1008949 and BPD, p = 0.0052 for rs1008949 and BPD1), which withstand multiple testing correction. In addition, the 'G-C-C-C' and 'G-C-G-C' haplotypes of EGR3 were overrepresented in the patients with BPD (p = 0.0055, < 0.0001, respectively) and the 'G-T-G-C' haplotype of EGR3 was underrepresented in patients with BPD (p = 0.0040). Conclusions In summary, our study supports the association of EGR3 with BPD in Korean population sample, and EGR3 could be suggested as a compelling susceptibility gene in BPD.

The whole wheat effect and refined with E-selectin polymorphism on breast cancer

  • Zakariya, Bilal Fadil;Almohaidi, Asmaa M. Salih;Simsek, Secil Akilli;Kamal, Areege Mustafa;Al-Dabbagh, Wijdan H.;Al-Waysi, Safaa A.
    • Analytical Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.161-168
    • /
    • 2022
  • Wheat is rich in sources of fiber, oligosaccharides, and resistant starch, simple carbohydrates which may have a protective role against carcinoma. Additionally, Whole wheat/bran as well includes contains phytochemicals such as flavonoids, lignans, folate, phytosterols, phenolic acids, and tocols. The above phytochemicals suitable forms antioxidant and cholesterol-reducing activities. Phytoestrogens are regarded as especially essential in the preventative measures of hormonally dependent malignancies such as breast cancer (BC). In this study lowered BC risk has been associated with whole grain/bran consumption with an odds ratio (OR=0.24 and 95 %CI=0.10-0.56). Wheat/bran appears to have a reliable protective impact against BC. While intake of white bread has been associated with a high risk of BC (OR=2.63 and CI 95 %=1.07-6.48). Also, the E-Selectin (SELE) Single nucleotide polymorphisms (SNPs) rs5353 A/G and rs932307 C/T were investigated using the sanger sequences approach. There was a positive association between genotypes (rs5353 GG+AG) and (rs932307 TT+CT) with rate consumption of wheat-white/bread and these genotypes were more frequent in patients had BC in comparison with a significant difference (P=0.03) (P=0.01), respectively. The genotypes (GG+AG) frequency of the rs5353 polymorphism and (TT+CT) genotypes of the rs932307 polymorphism in the present study had a high risk of cancer with (OR=3.05), (OR=4.17) respectively. While these genotypes showed no significant association with the rate of whole grain consumption in patients and control. Therefore, the type of wheat may associate with increased incidence of disease-related with type of Polymorphism because some present genotypes of SNPs showed high (OR) which may refer to their positive associated with disease, the white wheat consumption may active the risky association between SNPs and BC.

Genome wide association study for growth in Pakistani dromedary camels using genotyping-by-sequencing

  • Sajida Sabahat;Asif Nadeem;Rudiger Brauning;Peter C. Thomson;Mehar S. Khatkar
    • Animal Bioscience
    • /
    • v.36 no.7
    • /
    • pp.1010-1021
    • /
    • 2023
  • Objective: Growth performance and growth-related traits have a crucial role in livestock due to their influence on productivity. This genome-wide association study (GWAS) in Pakistani dromedary camels was conducted to identify single nucleotide polymorphisms (SNPs) associated with growth at specific camel ages, and for selected SNPs, to investigate in detail how their effects change with increasing camel age. This is the first GWAS conducted on dromedary camels in this region. Methods: Two Pakistani breeds, Marecha and Lassi, were selected for this study. A genotyping-by-sequencing method was used, and a total of 65,644 SNPs were identified. For GWAS, weight records data with several body weight traits, namely, birthweight, weaning weight, and weights of camels at 1, 2, 4, and 6 years of age were analysed by using model-based growth curve analysis. Age-specific weight data were analysed with a linear mixed model that included fixed effects of SNP genotype as well as sex. Results: Based on the q-value method for false discovery control, for Marecha camels, five SNPs at q<0.01 and 96 at q<0.05 were significantly associated with the weight traits considered, while three (q<0.01) and seven (q<0.05) SNP associations were identified for Lassi camels. Several candidate genes harbouring these SNP were discovered. Conclusion: These results will help to better understand the genetic architecture of growth including how these genes are expressed at different phases of their life. This will serve to lay the foundations for applied breeding programs of camels by allowing the genetic selection of superior animals.

Association of coffee consumption with type 2 diabetes and glycemic traits: a Mendelian randomization study

  • Hyun Jeong Cho;Akinkunmi Paul Okekunle ;Ga-Eun Yie ;Jiyoung Youn ;Moonil Kang;Taiyue Jin;Joohon Sung;Jung Eun Lee
    • Nutrition Research and Practice
    • /
    • v.17 no.4
    • /
    • pp.789-802
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Habitual coffee consumption was inversely associated with type 2 diabetes (T2D) and hyperglycemia in observational studies, but the causality of the association remains uncertain. This study tested a causal association of genetically predicted coffee consumption with T2D using the Mendelian randomization (MR) method. SUBJECTS/METHODS: We used five single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) associated with habitual coffee consumption in a previous genome-wide association study among Koreans. We analyzed the associations between IVs and T2D, fasting blood glucose (FBG), 2h-postprandial glucose (2h-PG), and glycated haemoglobin (HbA1C) levels. The MR results were further evaluated by standard sensitivity tests for possible pleiotropism. RESULTS: MR analysis revealed that increased genetically predicted coffee consumption was associated with a reduced prevalence of T2D; ORs per one-unit increment of log-transformed cup per day of coffee consumption ranged from 0.75 (0.62-0.90) for the weighted mode-based method to 0.79 (0.62-0.99) for Wald ratio estimator. We also used the inverse-variance-weighted method, weighted median-based method, MR-Egger method, and MR-PRESSO method. Similarly, genetically predicted coffee consumption was inversely associated with FBG and 2h-PG levels but not with HbA1c. Sensitivity measures gave similar results without evidence of pleiotropy. CONCLUSIONS: A genetic predisposition to habitual coffee consumption was inversely associated with T2D prevalence and lower levels of FBG and 2h-PG profiles. Our study warrants further exploration.