Browse > Article
http://dx.doi.org/10.5187/jast.2020.62.6.765

Mechanistic insight into the progressive retinal atrophy disease in dogs via pathway-based genome-wide association analysis  

Sheet, Sunirmal (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Krishnamoorthy, Srikanth (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Park, Woncheoul (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Lim, Dajeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Park, Jong-Eun (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Ko, Minjeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Choi, Bong-Hwan (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration)
Publication Information
Journal of Animal Science and Technology / v.62, no.6, 2020 , pp. 765-776 More about this Journal
Abstract
The retinal degenerative disease, progressive retinal atrophy (PRA) is a major reason of vision impairment in canine population. Canine PRA signifies an inherently dissimilar category of retinal dystrophies which has solid resemblances to human retinis pigmentosa. Even though much is known about the biology of PRA, the knowledge about the intricate connection among genetic loci, genes and pathways associated to this disease in dogs are still remain unknown. Therefore, we have performed a genome wide association study (GWAS) to identify susceptibility single nucleotide polymorphisms (SNPs) of PRA. The GWAS was performed using a case-control based association analysis method on PRA dataset of 129 dogs and 135,553 markers. Further, the gene-set and pathway analysis were conducted in this study. A total of 1,114 markers associations with PRA trait at p < 0.01 were extracted and mapped to 640 unique genes, and then selected significant (p < 0.05) enriched 35 gene ontology (GO) terms and 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways contain these genes. In particular, apoptosis process, homophilic cell adhesion, calcium ion binding, and endoplasmic reticulum GO terms as well as pathways related to focal adhesion, cyclic guanosine monophosphate)-protein kinase G signaling, and axon guidance were more likely associated to the PRA disease in dogs. These data could provide new insight for further research on identification of potential genes and causative pathways for PRA in dogs.
Keywords
Canine; Genome wide association study (GWAS); Inherited disease; Gene ontology; Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways; Progressive retinal atrophy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Landfried B, Samardzija M, Barben M, Schori C, Klee K, Storti F, et al. Digoxin-induced retinal degeneration depends on rhodopsin. Cell Death Dis. 2017;8:e2670. https://doi.org/10.1038/cddis.2017.94   DOI
2 Chiang WC, Kroeger H, Sakami S, Messah C, Yasumura D, Matthes MT, et al. Robust endoplasmic reticulum-associated degradation of rhodopsin precedes retinal degeneration. Mol Neurobiol. 2015;52:679-95. https://doi.org/10.1007/s12035-014-8881-8   DOI
3 Li C, Wang L, Huang K, Zheng L. Endoplasmic reticulum stress in retinal vascular degeneration: protective role of resveratrol. Invest Ophthalmol Visual Sci. 2012;53:3241-9. https://doi.org/10.1167/iovs.11-8406   DOI
4 Lin JH, Li H, Yasumura D, Cohen HR, Zhang C, Panning B, et al. IRE1 signaling affects cell fate during the unfolded protein response. Science. 2007;318:944-9. https://doi.org/10.1126/science.1146361   DOI
5 Li J, Wang JJ, Yu Q, Wang M, Zhang SX. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583:1521-7. https://doi.org/10.1016/j.febslet.2009.04.007   DOI
6 Ha Y, Dun Y, Thangaraju M, Duplantier J, Dong Z, Liu K, et al. Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Visual Sci. 2011;52:527-40. https://doi.org/10.1167/iovs.10-5731   DOI
7 Santos ARC, Corredor RG, Obeso BA, Trakhtenberg EF, Wang Y, Ponmattam J, et al. β1 integrin-focal adhesion kinase (FAK) signaling modulates retinal ganglion cell (RGC) survival. PLOS ONE. 2012;7:e48332. https://doi.org/10.1371/journal.pone.0048332   DOI
8 Karlskov‐Mortensen P, Proschowsky H, Gao F, Fredholm M. Identification of the mutation causing progressive retinal atrophy in Old Danish Pointing dog. Anim Genet. 2018;49:237-41. https://doi.org/10.1111/age.12659   DOI
9 Parry H. Recent advances in canine medicine, with particular regard to blindness, viral hepatitis and post-infective neurological disorders. Vet Rec. 1951;63:323-6. https://doi.org/10.1136/vr.63.18.323   DOI
10 Kelawala DN, Patil DB, Parikh PV, Sheth MJ, Joshi CG, Reddy B. Clinical studies on progressive retinal atrophy in 31 dogs. Iran J Vet Res. 2017;18:119-23.
11 Miyadera K. Inherited retinal diseases in dogs: advances in gene/mutation discovery. J Anim Genet. 2014;42:79-89. https://doi.org/10.5924/abgri.42.79   DOI
12 Gasparini SJ, Llonch S, Borsch O, Ader M. Transplantation of photoreceptors into the degenerative retina: current state and future perspectives. Prog Retin Eye Res. 2019;69:1-37. https://doi.org/10.1016/j.preteyeres.2018.11.001   DOI
13 Li N, Zheng H, Cui J, Wang J, Liu H, Sun J, et al. Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. Rice. 2019;12:24. https://doi.org/10.1186/s12284-019-0285-y   DOI
14 Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6:80-92. https://doi.org/10.4161/fly.19695   DOI
15 Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44-57. https://doi.org/10.1038/nprot.2008.211   DOI
16 Paquet‐Durand F, Hauck SM, Van Veen T, Ueffing M, Ekstrom P. PKG activity causes photoreceptor cell death in two retinitis pigmentosa models. J Neurochem. 2009;108:796-810. https://doi.org/10.1111/j.1471-4159.2008.05822.x   DOI
17 Gariano RF, Gardner TW. Retinal angiogenesis in development and disease. Nature. 2005;438:960-6. https://doi.org/10.1038/nature04482   DOI
18 Kornberg LJ, Shaw LC, Spoerri PE, Caballero S, Grant MB. Focal adhesion kinase overexpression induces enhanced pathological retinal angiogenesis. Invest Ophthalmol Visual Sci. 2004;45:4463-9. https://doi.org/10.1167/iovs.03-1201   DOI
19 Li G, Anderson RE, Tomita H, Adler R, Liu X, Zack DJ, et al. Nonredundant role of Akt2 for neuroprotection of rod photoreceptor cells from light-induced cell death. J Neurosci. 2007;27:203-11. https://doi.org/10.1523/JNEUROSCI.0445-06.2007   DOI
20 Tolone A, Belhadj S, Rentsch A, Schwede F, Paquet-Durand F. The cGMP pathway and inherited photoreceptor degeneration: targets, compounds, and biomarkers. Genes. 2019;10:453. https://doi.org/10.3390/genes10060453   DOI
21 He YG, Liao D, Zhao B, Owens J, Johnston JM. Evidence for a role of platelet-activating factor (PAF) in the pathogenesis of age-related macular degeneration (AMD). Invest Ophthalmol Visual Sci. 2007;48:2200.
22 Nam D, Kim SY. Gene-set approach for expression pattern analysis. Brief Bioinform. 2008;9:189-97. https://doi.org/10.1093/bib/bbn001   DOI
23 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25:25-9. https://doi.org/10.1038/75556   DOI
24 Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29-34. https://doi.org/10.1093/nar/27.1.29   DOI
25 Pegolo S, Mach N, Ramayo-Caldas Y, Schiavon S, Bittante G, Cecchinato A. Integration of GWAS, pathway and network analyses reveals novel mechanistic insights into the synthesis of milk proteins in dairy cows. Sci Rep. 2018;8:566. https://doi.org/10.1038/s41598-017-18916-4   DOI
26 Bolz H, Reiners J, Wolfrum U, Gal A. The role of cadherins in Ca2+-mediated cell adhesion and inherited photoreceptor degeneration. In: Baehr W, Palczewski K, editors. Photoreceptors and calcium. Boston: Springer; 2002. p. 399-410.
27 Hiscott P, Sheridan C, Magee RM, Grierson I. Matrix and the retinal pigment epithelium in proliferative retinal disease. Prog Retin Eye Res. 1999;18:167-90. https://doi.org/10.1016/S1350-9462(98)00024-X   DOI
28 Herzlich AA, Patel M, Sauer TC, Chan CC. Retinal anatomy and pathology. In: Nguyen QD, Rodrigues EB, Farah M, Mieler WF, editors. Retinal pharmacotherapy e-book. Saunders Elsevier; 2010. p. 5-14.
29 Yang X, Chung JY, Rai U, Esumi N, Lewin AS. Cadherins in the retinal pigment epithelium (RPE) revisited: P-cadherin is the highly dominant cadherin expressed in human and mouse RPE in vivo. PLOS ONE. 2018;13:e0191279. https://doi.org/10.1371/journal.pone.0191279   DOI
30 Chen HJ, Ma ZZ. N-cadherin expression in a rat model of retinal detachment and reattachment. Invest Ophthalmol Vis Sci. 2007;48:1832-8. https://doi.org/10.1167/iovs.06-0928   DOI
31 Marigo V. Programmed cell death in retinal degeneration: targeting apoptosis in photoreceptors as potential therapy for retinal degeneration. Cell Cycle. 2007;6:652-5. https://doi.org/10.4161/cc.6.6.4029   DOI
32 Shapiro L, Weis WI. Structure and biochemistry of cadherins and catenins. Cold Spring Harb Perspect Biol. 2009;1:a003053. https://doi.org/10.1101/cshperspect.a003053   DOI
33 Chang GQ, Hao Y, Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and mutant mice. Neuron. 1993;11:595-605. https://doi.org/10.1016/0896-6273(93)90072-Y   DOI
34 Doonan F, Donovan M, Cotter TG. Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration. J Neurosci. 2003;23:5723-31. https://doi.org/10.1523/JNEU-ROSCI.23-13-05723.2003   DOI
35 Lippmann T, Pasternack SM, Kraczyk B, Dudek SE, Dekomien G. Indirect exclusion of four candidate genes for generalized progressive retinal atrophy in several breeds of dogs. J Negat Results Biomed. 2006;5:19. https://doi.org/10.1186/1477-5751-5-19   DOI
36 Yoon S, Nguyen HCT, Yoo YJ, Kim J, Baik B, Kim S, et al. Efficient pathway enrichment and network analysis of GWAS summary data using GSA-SNP2. Nucleic Acids Res. 2018;46:e60. https://doi.org/10.1093/nar/gky175   DOI
37 Kao PY, Leung KH, Chan LW, Yip SP, Yap MK. Pathway analysis of complex diseases for GWAS, extending to consider rare variants, multi-omics and interactions. Biochim Biophys Acta Gen Subj. 2017;1861:335-53. https://doi.org/10.1016/j.bbagen.2016.11.030   DOI
38 Lee CM, Song DW, Ro WB, Kang MH, Park HM. Genome-wide association study of degenerative mitral valve disease in Maltese dogs. J Vet Sci. 2019;20:63-71. https://doi.org/10.4142/jvs.2019.20.1.63   DOI
39 Finci L, Zhang Y, Meijers R, Wang JH. Signaling mechanism of the netrin-1 receptor DCC in axon guidance. Prog Biophys Mol Biol. 2015;118:153-60. https://doi.org/10.1016/j.pbiomolbio.2015.04.001   DOI
40 Teotia P, Van Hook MJ, Fischer D, Ahmad I. Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: effects of recruitment of the mTOR pathway. Development. 2019;146:dev178012. https://doi.org/10.1242/dev.178012   DOI
41 Marchong MN, Chen D, Corson TW, Lee C, Harmandayan M, Bowles E, et al. Minimal 16q genomic loss implicates cadherin-11 in retinoblastoma. Mol Cancer Res. 2004;2:495-503.
42 Petersen-Jones SM. Animal models of human retinal dystrophies. Eye. 1998;12:566-70. https://doi.org/10.1038/eye.1998.146   DOI
43 Dadousis C, Pegolo S, Rosa GJM, Gianola D, Bittante G, Cecchinato A. Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. J Dairy Sci. 2017;100:1223-31. https://doi.org/10.3168/jds.2016-11587   DOI
44 Dadousis C, Pegolo S, Rosa GJ, Bittante G, Cecchinato A. Genome-wide association and pathway-based analysis using latent variables related to milk protein composition and cheesemaking traits in dairy cattle. J Dairy Sci. 2017;100:9085-102. https://doi.org/10.3168/jds.2017-13219   DOI
45 Naureen K, Naqsh-e-Zahra S, Awan W. Molecular modeling of discoidin domain receptor tyrosine kinase 2 (DDR2) and ATPase, Na+/K+ transporting, alpha 4 polypeptide (ATP1A4): candidate genes for autosomal recessive cone-rod dystrophy (CORD8). Int J Rehabil Sci. 2012;1:53-7.
46 Fanous AH, Zhou B, Aggen SH, Bergen SE, Amdur RL, Duan J, et al. Genome-wide association study of clinical dimensions of schizophrenia: polygenic effect on disorganized symptoms. Am J Psychiatry. 2012;169:1309-17. https://doi.org/10.1176/appi.ajp.2012.12020218   DOI
47 Downs LM, Wallin-Hakansson B, Bergstrom T, Mellersh CS. A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet Epidemiol. 2014;1:4. https://doi.org/10.1186/2052-6687-1-4   DOI
48 Wiik A, Ropstad E, Ekesten B, Karlstam L, Wade C, Lingaas F. Progressive retinal atrophy in Shetland sheepdog is associated with a mutation in the CNGA1 gene. Anim Genet. 2015;46:515-21. https://doi.org/10.1111/age.12323   DOI
49 Parry H. Degenerations of the dog retina: II. generalized progressive atrophy of hereditary origin. Br J Ophthalmol. 1953;37:487-502. https://doi.org/10.1136/bjo.37.8.487   DOI
50 Magnusson H. Om nattblindhet hos hund sasom foljd av slaktskapsafvel. Sven Vet Tidskr. 1909;14:462-6.