• Title/Summary/Keyword: single-mode operation

Search Result 292, Processing Time 0.027 seconds

Controlled-Type ZVS Technique without Auxiliary Components for Micro-inverters

  • Zhang, Qian;Zhang, Dehua;Hu, Haibing;Shen, John;Batarseh, Issa
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.919-927
    • /
    • 2013
  • This paper proposes a Boundary Current Mode (BCM) control scheme to realize soft switching on a conventional single phase full bridge DC/AC inverter. This technique with the advantages of no auxiliary components, low cost, high efficiency, and simple in control, is attractive for micro-inverter applications. The operation principle and characteristic waveforms of the proposed soft switching technique are analyzed in theory. A digital controller is provided based on that theory. To balance the requirements of efficiency, switching frequency, and inductor size, the design considerations are discussed in detail to guide in BCM inverter construction. A 150W prototype is built under these guidelines to implement the BCM control scheme. Simulation and experiment results demonstrate the feasibilities of the proposed soft switching technique.

A Novel Switched Capacitor Lossless Inductors Quasi-Resonant Snubber Assisted ZCS PWM High Frequency Series Load Resonant Inverter

  • Fathy, Khairy;Kang, Tae-Kyung;Kwon, Soon-Kurl;Suh, Ki-Young;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.169-171
    • /
    • 2005
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM series load resonant high frequency inverter with two auxiliary edge resonant lossless inductor snubbers is proposed for small consumer induction heating appliances. The operation principle of this high frequency inverter is described using the switching mode equivalent circuits. The practical effectiveness of the newly proposed soft switching inverter are discussed as compared with the conventional soft switching high frequency inverters based on simulation and experimental results from an application point of view.

  • PDF

Design of a service robot with dual manipulators and stereo vision (Dual Manipulator와 Stereo Vision을 이용한 서비스 로봇)

  • Lee, Dae-Hui;Lee, Hui-Guk;U, Gyeong-Seok;Ham, Sang-Hwa;Park, Ju-Hyeon;Lee, Seok-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.743-746
    • /
    • 2003
  • The service robot, with stereo vision system and dual manipulator of four degree of freedom, has been designed. A fuzzy controller has been implemented for effectively actuating the manipulator of the robot. The fuzzy controller determines operation mode(single or dual manipulators) and orientation from the information of object position and distance. Through actual experimentation, we have confirmed that the robot system with human-like movement of grabber has been executed a rapid and effective motion.

  • PDF

Design of Low-complexity FFT Processor for Multi-mode Radar Signal Processing (멀티모드 레이다 신호처리를 위한 저복잡도 FFT 프로세서 설계)

  • Park, Yerim;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, a multi-mode radar system was designed for efficient operation of unmanned aerial vehicles (UAVs) in various environments, which has the advantage of being able to integrate and utilize methods of the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar. For the range detection part of the multi-mode radar signal processor (RSP), the hardware structure using the FFT processor and the IFFT processor is required to be designed in a way that improves efficiency on the area side. In addition, given the radar application environment that requires a variety of distance resolutions, FFT processors need to support variable-length operations. In this paper, the FFT processor and IFFT processor in multi-mode RSP range estimation are designed and proposed as hardware for a single FFT processor that supports variable length operation of 16-1024 points. The proposed FFT processor designed in hardware description language (HDL) and can be implemented with 7,452 logic elements and 5,116 registers.

Reduction of Radiation Exposure by Modifying Imaging Manner and Fluoroscopic Settings during Percutaneous Pedicle Screw Insertion

  • Kim, Hyun Jun;Park, Eun Soo;Lee, Sang Ho;Park, Chan Hong;Chung, Seok Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.6
    • /
    • pp.933-943
    • /
    • 2021
  • Objective : Percutaneous pedicle screw (PPS) fixation is a needle based procedure that requires fluoroscopic image guidance. Consequently, radiation exposure is inevitable for patients, surgeons, and operation room staff. We hypothesize that reducing the production of radiation emission will result in reduced radiation exposure for everyone in the operation room. Research was performed to evaluate reduction of radiation exposure by modifying imaging manner and mode of radiation source. Methods : A total of 170 patients (680 screws) who underwent fusion surgery with PPS fixation from September 2019 to March 2020 were analyzed in this study. Personal dosimeters (Polimaster Ltd.) were worn at the collar outside a lead apron to measure radiation exposure. Patients were assigned to four groups based on imaging manner of fluoroscopy and radiation modification (pulse mode with reduced dose) : continuous use without radiation modification (group 1, n=34), intermittent use without radiation modification (group 2, n=54), continuous use with radiation modification (group 3, n=26), and intermittent use with radiation modification (group 4, n=56). Post hoc Tukey Honest significant difference test was used for individual comparisons of radiation exposure/screw and fluoroscopic time/screw. Results : The average radiation exposure/screw was 71.45±45.75 µSv/screw for group 1, 18.77±11.51 µSv/screw for group 2, 19.58±7.00 µSv/screw for group 3, and 4.26±2.89 µSv/screw for group 4. By changing imaging manner from continuous multiple shot to intermittent single shot, 73.7% radiation reduction was achieved in the no radiation modification groups (groups 1, 2), and 78.2% radiation reduction was achieved in the radiation modification groups (groups 3, 4). Radiation source modification from continuous mode with standard dose to pulse mode with reduced dose resulted in 72.6% radiation reduction in continuous imaging groups (groups 1, 3) and 77.3% radiation reduction in intermittent imaging groups (groups 2, 4). The average radiation exposure/screw was reduced 94.1% by changing imaging manner and modifying radiation source from continuous imaging with standard fluoroscopy setting (group 1) to intermittent imaging with modified fluoroscopy setting (group 4). A total of 680 screws were reviewed postoperatively, and 99.3% (675) were evaluated as pedicle breach grade 0 (<2 mm). Conclusion : The average radiation exposure/screw for a spinal surgeon can be reduced 94.1% by changing imaging manner and modifying radiation source from real-time imaging with standard dose to intermittent imaging with modified dose. These modifications can be instantly applied to any procedure using fluoroscopic guidance and may reduce the overall radiation exposure of spine surgeons.

The Disruption of Saccharomyces cerevisiae Cells and Release of Glucose 6-Phosphate Dehydrogenase (G6PDH) in a Horizontal Dyno Bead Mill Operated in Continuous Recycling Mode

  • Mei Chow Yen;Ti Tey Beng;Ibrahim Mohammad Nordin;Ariff Arbakariya;Chuan Ling Tau
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.284-288
    • /
    • 2005
  • Baker's yeast was disrupted in a 1.4-L stainless steel horizontal bead mill under a continuous recycle mode using 0.3 mm diameter zirconia beads as abrasive. A single pass in continuous mode bead mill operation liberates half of the maximally released protein. The maximum total protein release can only be achieved after passaging the cells 5 times through the disruption chamber. The degree of cell disruption was increased with the increase in feeding rate, but the total protein release was highest at the middle range of feeding rate (45 L/h). The total protein release was increased with an increase in biomass concentration from 10 to $50\%$(w/v). However, higher heat dissipation as a result of high viscosity of concentrated biomass led to the denaturation of labile protein such as glucose 6-phosphate dehydrogenase (G6PDH). As a result the highest specific activity of G6PDH was achieved at biomass concentration of $20\%$(ww/v). Generally, the degree of cell disruption and total protein released were increased with an increase in impeller tip speed, but the specific activity of G6PDH was decreased substantially at higher impeller tip speed (14 m/s). Both the degree of cell disruption and total protein release increased, as the bead loading increased from 75 to $85\% (v/v)$. Hence, in order to obtain a higher yield of labile protein such as G6PDH, the yeast cell should not be disrupted at biomass concentration and impeller tip speed higher than $20\%(w/v)$ and 10 m/s, respectively.

Operating Criteria of Core Exit Temperature in Nuclear Power Plant with using Channel Statistical Allowance (총채널 불확실도를 적용한 원전 노심출구온도의 운전가능 판정기준)

  • Sung, Je Joong;Joo, Yoon Duk;Ha, Sang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.166-171
    • /
    • 2014
  • Nuclear power plants are equipped with the reactor trip system (RTS) and the engineered safety features actuation system (ESFAS) to improve safety on the normal operation. In the event of the design basis accident (DBA), a various of post accident monitor(PAM)systems support to provide important details (e.g. Containment pressure, temperature and pressure of reactor cooling system and core exit temperature) to determine action of main control room (MCR). Operator should be immediately activated for the accident mitigation with the information. Especially, core exit temperature is a critical parameter because the operating mode converts from normal mode to emergency mode when the temperature of core exit reaches $649^{\circ}C$. In this study, uncertainty which was caused by exterior environment, characteristic of thermocouple/connector and accuracy of calibrator/indicator was evaluated in accordance with ANSI-ISA 67.04. The square root of the sum of square (SRSS) methodology for combining uncertainty terms that are random and independent was used in the synthesis. Every uncertainty that may exist in the hardware which is used to measure the core exit temperature was conservatively applied and the associative relation between the elements of uncertainty was considered simultaneously. As a result of uncertainty evaluation, the channel statistical allowance (CSA) of single channel of core exit temperature was +1.042%Span. The range of uncertainty, -0.35%Span ($-4.05^{\circ}C$) ~ +2.08%Span($24.25^{\circ}C$), was obtained as the operating criteria of core exit temperature.

Component-Level Humidity Correction for Gas Turbine Engine Using Map Transposition Technique (특성 곡선 전치 기법을 이용한 가스 터어빈 엔진의 구성품 수준 습도 보정)

  • 이시우;정명균;임진식
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.83-94
    • /
    • 2000
  • A systematic humidity correction technique that can be used for any type of engine control mode is developed to predict the variation of engine performance due to inlet humidity. Limitation of conventional method is rot identified and then, a new method is proposed to take into account the humidity effects on each engine component characteristics and to find the variation of equilibrium running point through a re-match process between the components with a given engine control variable depending on the humidity of inlet. Comparisons are made between two methods for a single spool gas turbine engine, and it was found that the conventional method leads to invalid correction when a physical variable such as rotational speed is controlled for engine operation in humid environment. It was also found that the accuracy of the conventional method depends on the engine control mode and the engine configuration whereas the proposed method can be used for any type of engine control mode and engine configuration.

  • PDF

Power Factor Correction LED Driver with Small 120Hz Current Ripple (낮은 120Hz 출력 전류 리플을 갖는 역률개선 LED 구동 회로)

  • Sakong, Suk-Chin;Park, Hyun-Seo;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2014
  • Recently, the LED(Light Emitting Diode) is expected to replace conventional lamps including incandescent, halogen and fluorescent lamps for some general illumination application, due to some obvious features such as high luminous efficiency, safety, long life, environment-friendly characteristics and so on. To drive the LED, a single stage PFC(Power Factor Correction) flyback converter has been adopted to satisfy the isolation, PFC and low cost. The conventional flyback LED driver has the serious disadvantage of high 120Hz output current ripple caused by the PFC operation. To overcome this drawback, a new PFC flyback with low 120Hz output current ripple is proposed in this paper. It is composed of 2 power stages, the DCM(Discontinuous Conduction Mode) flyback converter for PFC and BCM(Boundary Conduction Mode) boost converter for tightly regulated LED current. Since the link capacitor is located in the secondary side, its voltage stress is small. Moreover, since the driver is composed of 2 power stages, small output filter and link capacitor can be used. Especially, since the flyback is operated at DCM, the PFC can be automatically obtained and thus, an additional PFC IC is not necessary. Therefore, only one control IC for BCM boost converter is required. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

Implementation of Novel Bio-sensor Platform based on Optical Taper Coupler (광 테이퍼 결합기에 기초한 새로운 바이오-센서 플랫폼의 구현)

  • Kwang-Chun Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.5
    • /
    • pp.145-150
    • /
    • 2023
  • Non-uniform optical taper waveguides have been widely used as devices for high-efficiency mode coupling, as they are integrated with single-mode optical fibers or photonic crystal waveguides. In this paper, we present a new platform for chemical sensing and bio-sensing using optical taper waveguides with these characteristics. The principle of operation is based on the coupling efficiency and interference properties of optical directional coupler (DC) and multi-mode interference coupler (MMIC). First, the curvature characteristics of taper sections of DC and MMIC is explained, and the design specifications of optimized taper waveguide to increase waveguide sensitivity is selected. Next, the sensor response to the change in refractive index of sensing analyte is numerically analyzed. Numerical results show that as the length of couplers increases, the effective index per change in refractive index unit (RIU) of analyte increases, and that sensitivity can be tuned using taper DC and MMIC design techniques.