Proceedings of the Korean Society of Broadcast Engineers Conference
/
2014.11a
/
pp.200-202
/
2014
본 논문은 High bit-depth 를 위한 SIMD (Single Instruction, Multiple Data) 명령어 기반 보간 필터 고속화 방법을 제안한다. 픽셀 연산을 기반으로 하는 보간 필터링은 HEVC 복호화기에서 높은 복잡도를 차지하고 있지만 반복적인 산술연산을 수행하기 때문에 SIMD 를 이용한 고속화에 적합한 구조를 가지고 있다. 이러한 이유로 본 논문에서는 보간 필터 연산에 대하여 SIMD 명령어를 이용하여 메모리를 효율적으로 사용하여 고속화하는 방법을 제안한다. 제안하는 기술은 HEVC 참조 소프트웨어 HM 12.0-RExt 4.1 에 기반을 둔 ANSI C 기반 자체 개발 HEVC RExt 복호화기 소프트웨어에서 평균 8.5%의 복호화 속도향상을 보였으며, 보간 필터의 수행 시간을 평균 24.8% 향상시켰다.
In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.
A graphic processing unit (GPU) can perform the same calculation on multiple data (SIMD: single instruction multiple data) using hundreds of to thousands of special purpose processors for graphic processing. Thus, high efficiency is expected when GPU is used for the generation and correlation of satellite navigation signals, which perform generation and processing by applying the same calculation procedure to tens of millions of discrete signal samples per second. In this study, the structure of a GPU-based GNSS simulator for the generation and processing of satellite navigation signals was designed, developed, and verified. To verify the developed satellite navigation signal generator, generated signals were applied to the OEM-V3 receiver of Novatel Inc., and the measured values were examined. To verify the satellite navigation signal processor, the performance was examined by collecting and processing actual GNSS intermediate frequency signals. The results of the verification indicated that satellite navigation signals could be generated and processed in real time using two GPUs.
As mobiles devices with high-spec camera built in are used widely, the visual quality enhancement of the high-resolution images turns out to be one of the key capabilities of the mobile devices. Due to the limited computational resources of the mobile devices and the size of the high-resolution images, we should choose an image processing algorithm not too complex and use an efficient implementation technology. One of the simple and widely used image quality enhancement algorithms is contrast stretching. Java libraries running on a virtual machine, JNI (Java Native Interface) based native C/C++, and NEONTM SIMD (Single Instruction Multiple Data) are common implementation technologies in the case of Android smartphones. Using these three implementation technologies, we have implemented two image contrast stretching algorithms - linear and equalized, and compared the computation times. The native C/C++ and the NEONTM SIMD outperformed the native C/C++ implementation by 56-78 and 50-76 time faster respectively.
The Transactions of the Korea Information Processing Society
/
v.4
no.10
/
pp.2544-2552
/
1997
This paper presents three multiprocess models for parallel protocol implementation, that is, (1)channel communication model, (2)fork-join model, and (3)event polling model. For the specification of parallelism for each model, a parallel programming language, Par. C System, is used. to measure the performance of multiprocess models, we implemented the Internet Protocol Suite(IPS) Internet Protocol (IP) for each model by writing the parallel language on the Transputer. After decomposing the IP functions into two parts, that is, the sending side and the receiving side, the parallelism in both sides is exploited in the form of Multiple Instruction Single Data (MISD). Three models are evaluated and compared on the basis of various run-time overheads, such as an event sending via channels in the parallel channel communication model, process creating in the fork-join model and context switching in the event polling model, at the sending side and the receiving side. The event polling model has lower processing delays as about 77% and 9% in comparison with the channel communication model and the fork-join model at the sending side, respectively. At the receiving side, the fork-join model has lower processing delays as about 55% and 107% in comparison with the channel communication model and the event polling model, respectively.
Recently, GPU (Graphics Processing Unit) has been improved rapidly on the need of speed for gaming. As a result, GPU contains multiple ALU (Arithmetic Logic Unit) for parallel processing of a lot of graphics data, such as transform, ray tracing, etc. Therefore, this paper proposed a technique for parallel processing of spatial data using GPU. Spatial data consists of multiple coordinates, and each coordinate contains value of x and y axis. To display spatial data graphics operations have to be processed to large amount of coordinates. Because the graphics operation is identical and coordinates are multiple data, SIMD (Single Instruction Multiple Data) parallel processing of GPU can be used for processing of spatial data to improve performance. This paper implemented SIMD parallel processing of spatial data using two kinds of SDK (Software Development Kit). CUDA and ATI Stream are used for NVIDIA and ATI GPU respectively. Experiments that measure time of calculation for graphics operations are carried out to observe enhancement of performance. Experimental result is reported that proposed method can enhance performance up to 1,162% for graphics operations. The proposed method that uses parallel processing with GPU for spatial data can be generally used to enhance performance for applications which deal with large amount of spatial data.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.10
/
pp.935-943
/
2017
CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.
IEIE Transactions on Smart Processing and Computing
/
v.5
no.4
/
pp.294-301
/
2016
In this paper, we present methods to efficiently parallelize iterative 3D image reconstruction by exploiting trigeneous devices (three different types of device) at the same time: a CPU, an integrated GPU, and a discrete GPU. We first present a technique that exploits single instruction multiple data (SIMD) architectures in GPUs. Then, we propose a performance estimation model, based on which we can easily find the optimal data partitioning on trigeneous devices. We found that the performance significantly varies by up to 6.23 times, depending on how SIMD units in GPUs are accessed. Then, by using trigeneous devices and the proposed estimation models, we achieve optimal partitioning and throughput, which corresponds to a 9.4% further improvement, compared to discrete GPU-only execution.
For the effective management of medical images, it becomes popular to use computing machines in medical practice, namely PACS. However, the amount of image data is so large that there is a lack of storage space. We usually use data compression techniques to save storage, but the process speed of machines is not fast enough to meet surgical requirement. So a special hardware system processing medical images faster is more important than ever. To meet the demand for high speed image processing, especially image compression and decompression, we designed and implemented the medical image CODEC (COder/DECoder) based on MISD (Multiple Instruction Single Data stream) architecture to adopt parallelism in it. Considering not being a standard scheme of medical image compression/decompression, the CODEC is designed programable and general. In this paper, we use JPEG (Joint Photographic Experts Group) algorithm to process images and evalutate the CODEC.
DES is an improvement of the algorithm Lucifer developed by IBM in the 1977. IBM, the National Security Agency (NSA) and the National Bureau of Standards (NBS now National Institute of Standards and Technology NIST) developed the DES algorithm. The DES has been extensively studied since its publication and is the most widely used symmetric algorithm in the world. But nowadays, Triple DES (TDES) is more widely used than DES especially in the application in case high level of data security is required. Even though TDES can be implemented based on standard algorithm, very high speed TDES codec performance is required to process when encrypted high resolution satellite image data is down-linked at high speed. In this paper, Intel SSE2 (Streaming SIMD (Single-Instruction Multiple-Data) Extensions 2 of Intel) is applied to TDES Decryption algorithm and proved its effectiveness in the processing time reduction by comparing the time consumed for two cases; original TDES Decryption and TDES Decryption with SSE2
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.