• Title/Summary/Keyword: single-carrier frequency-division multiple access

Search Result 52, Processing Time 0.026 seconds

User Pairing and Resource Allocation for DFTS-OFDMA Uplink Systems Using Virtual MIMO (가상 여러입력 여러출력을 적용한 DFTS-OFDMA 상향 링크 시스템에서의 사용자 쌍 선택 및 자원 할당)

  • Shin, Dong Ryul;Wang, Jinsoo;Kim, Yun Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.5
    • /
    • pp.443-450
    • /
    • 2013
  • We consider user pairing and resource allocation for the uplink of cellular systems employing virtual multiple input multiple output (MIMO). As a multiple access scheme, discrete Fourier transform spread orthogonal frequency division multiple access (DFTS-OFDMA) is adopted for more flexible resource allocation than single carrier (SC)-OFDMA adopted in the Long Term Evolution (LTE) system. We formulate the optimization problems of user pairing and resource allocation to maximize the throughput of the DFTS-OFDMA system under different constraints. The DFTS-OFDMA allowing non-contiguous subcarrier allocation and redundant user assignment provides a better throughput than the SC-FDMA at lower complexity in finding the optimal solution but at the cost of the increased control information indicating the allocated resources.

Space-Frequency Block Coded Relay Transmission System for a Shadow Area (음영 지역을 위한 주파수 공간 블록 부호화 중계기 전송 시스템)

  • Won, Hui-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5776-5782
    • /
    • 2014
  • Relay-assisted wireless communication systems have been studied widely to cope with shadow areas and extend the cell coverage. This paper proposes a space-frequency (SF) block coded single carrier-frequency division multiple access (SC-FDMA) transmission system in a relaying multi-path shadow area and present the performance comparison of SC-FDMA systems based on the signal-to-noise power ratio (SNR) between a relay and a destination station. The performance of relaying SC-FDMA systems can be improved by applying SF block code to the recovered signals of relays before re-transmitting them. The simulation result showed that the SNR performance of the proposed SF block coded relaying SC-FDMA system was approximately 5 dB better than the SNR performance of the single-path relaying SC-FDMA system at a symbol error rate (SER) of $10^{-2}$.

PAPR Analysis of the OFDMA and SC-FDMA in the Uplink of a Mobile Communication System

  • Li, Yingshan;Lee, Il-Jin;Kim, Jang-Su;Ryu, Heung-Gyoon
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.17-24
    • /
    • 2009
  • In recent years, OFDMA(orthogonal frequency division multiple access) and SC-FDMA(Single Carrier Frequency Division Multiple Access) have been widely studied for the uplink of a mobile communication system. In this paper, PAPR(Peak-to-Average Power Ratio) and BER(Bit Error Rate) performance of the OFDMA and SC-FDMA systems are studied in relation to the uplink of a mobile communication system. Three kinds of sub-carrier allocation methods in the OFDMA system and 2 kinds of sub-carrier allocation methods in SC-FDMA system are suggested to compare and improve system performance. Simulation results show that in the OFDMA system, the first sub-band allocation method has better PAPR reduction performance than the other methods. In the SC-FDMA system, the distributed allocation method offers similar P APR, compared with the sub-band allocation method. P APR can be further reduced by adding a spectrum shaping filter with an appropriate roll of factor. Furthermore, it is found that on average, SC-FDMA can reduce the PAPR by more than 5 dB compared to OFDMA, when the total sub-carrier number is 1,024 and the sub-carrier number allocated to each user changes trom 8 to 512. Because of the frequency diversity and low PAPR characteristics, SC-FDMA system of the distributed sub-carrier allocation method can achieve better BER performance than the OFDMA system.

3/4-rate SFBC SSB SC FDMA System with 4 Transmit Antennas (4개의 송신 안테나를 갖는 3/4 비율의 주파수 공간 블록 부호 단일 측대 파형 SC FDMA 시스템)

  • Won, HuiChul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.26 no.6
    • /
    • pp.1-9
    • /
    • 2021
  • In order to increase frequency transmission efficiency, single side band(SSB) transmission systems with the complex conjugate symmetry characteristics on a frequency domain have been studied. In addition, orthogonal block codes(space-time or space-frequency block code(SFBC)) for the diversity performance gain of transmission systems have been widely researched. In this paper, we implement a 3/4-rate SFBC SSB single-carrier(SC) frequency division multiple access(FDMA) system with 4 transmit antennas. It can be shown from the simulation results that the proposed SFBC SSB SC FDMA system using the 3/4-rate 4×4 orthogonal block code outperforms the conventional SSB SC FDMA system and the 2×2 SFBC SSB SC FDMA system with 2 transmit antennas.

Design of Antenna Array and Hybrid Receiver in Sidehaul System (사이드홀 시스템에서 안테나 배열 설계 및 하이브리드 수신기)

  • Moon, Sangmi;Choe, Hun;Chu, Myeonghun;Kim, Daejin;Kim, Cheol-Sung;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.10-22
    • /
    • 2015
  • Recently, 3rd Generation Partnership Project (3GPP) has developed sidehaul system to cope with the explosively increasing mobile data traffic. The sidehaul system is based on single carrier-frequency division multiple access (SC-FMDA) due to its low peak to average power ratio (PAPR). Also, antenna array is designed to support multiple input multiple output (MIMO) in a restricted space. In this paper, we design the antenna array about uniform linear array (ULA), uniform circular array (UCA) and uniform planar array (UPA), and analysis the performance in sidehaul system. In addition, we propose the novel hybrid receiver full suppression cancellation (FSC) to reduce the interference from neighbor cell in sidehaul system. The proposed receiver can suppress and cancel the interference by combining interference rejection combining (IRC) with successive interference cancellation (SIC).

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

Power and Rate Adaptations in Multi-carrier DS/CDMA Communications over Rayleigh Fading Channel (레일레이 패이딩 채널에서 다중 반송자 DS/CDMA 통신 시스템의 전력-전송율 적응 방식)

  • Ah Heejune;Lee Ye Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.6C
    • /
    • pp.423-433
    • /
    • 2005
  • We present power(in frequency domain) and rate adaptation(in time domain) schemes in multicarrier (MC) direct-sequence code-division multiple-access(DS/CDMA) communications. Utilizing channel state information from the receiver, the adaptation schemes allocate power the user's sub-band with the largest channel gain. In the time domain, the transmission data rate is adapted for a desired transmission quality. In the case of single-user channels, a closed-form expression is derived for an optimal time domain power adaptation that minimizes the average bit error rate(BER). Channel inversion power adaptation is found to provide nearly optimal performance in this case, as the number of sub-bands or available average transmission power increase. Analysis and simulation results show the BER performance of the proposed power and rate adaptations with fixed average transmission power significantly improves the performance over the power allocation in the frequency domain only. Also, we compare the performance of the proposed power and rate adaptation schemes in MC-DS/CDMA systems with that of power and rate adapted single carrier DS/CDMA systems with RAKE receiver.

Compensation of Phase Noise and IQ Imbalance in the OFDM Communication System of DFT Spreading Method (DFT 확산 방식의 OFDM 통신 시스템에서 위상잡음과 직교 불균형 보상)

  • Ryu, Sang-Burm;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • DFT-spread OFDM(Discrete Fourier Transform-Spread Orthogonal Frequency Division Multiplexing) is very effective for solving the PAPR(Peak-to-Average Power Ratio) problem. Therefore, the SC-FDMA(Single Carrier-Frequency Division Multiple Access) which is basically same to the DFT spread OFDM was adopted as the uplink standard of the 3GPP LTE ($3^{rd}$ Generation Partnership Project Long Term Evolution). Unlike the ordinary OFDM system, the SC-FDMA using DFT spreading method is vulnerable to the ICI(Inter-Carrier Interference) problem caused by the phase noise and IQ(In-phase/Quadrature) imbalance and effected FDE(Frequency Domain Equalizer). In this paper, the ICI effects from the phase noise and IQ imbalance which can be problems in uplink transmission are analyzed according the back-off level of HPA. Next, we propose the equalizer algorithm to remove the ICI effects. This proposed equalizer based on the FDE can be considered as up-graded and improved version of PNS(Phase Noise Suppression) algorithm. This proposed equalizer effectively compensates the ICI resulting from the phase noise and IQ imbalance. Finally, through the computer simulation, it can be shown that about SNR=14 dB is required for the $BER=10^{-4}$ after ICI compensation when the back-off is 4.5 dB, $\varepsilon=0.005$, $\phi=5^{\circ}$, and $pn=0.06\;rad^2$.

Cooperative Synchronization and Channel Estimation in Wireless Sensor Networks

  • Oh Mi-Kyung;Ma Xiaoli;Giannakis Georgios B;Park Dong-Jo
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.284-293
    • /
    • 2005
  • A critical issue in applications involving networks of wireless sensors is their ability to synchronize, and mitigate the fading propagation channel effects. Especially when distributed 'slave' sensors (nodes) reach-back to communicate with the 'master' sensor (gateway), low power cooperative schemes are well motivated. Viewing each node as an antenna element in a multi-input multi-output (MIMO) multi-antenna system, we design pilot patterns to estimate the multiple carrier frequency offsets (CFO), and the multiple channels corresponding to each node-gateway link. Our novel pilot scheme consists of non-zero pilot symbols along with zeros, which separate nodes in a time division multiple access (TDMA) fashion, and lead to low complexity schemes because CFO and channel estimators per node are decoupled. The resulting training algorithm is not only suitable for wireless sensor networks, but also for synchronization and channel estimation of single- and multi-carrier MIMO systems. We investigate the performance of our estimators analytically, and with simulations.

A Study on Radio Resource Management for Multi-cell SC-FDMA Systems (다중셀 SC-FDMA를 위한 무선자원 관리기법에 관한연구)

  • Chung, Yong-Joo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.15 no.4
    • /
    • pp.7-15
    • /
    • 2010
  • This study proposes a rad o resource management scheme to maximize the performance of the LTE(Long Term Evolution) uplink, using SC-FDMA(Single Carrier-Frequency Division Multiple Access). Rather than the single-cell SC-FDMA system the existing studies are mainly concerning, this study focuses on multi-cell system which needs considering the interaction among cells. Radio resource management is divided into two phases, planning and operation phases. The former is for the master eNB(e-NodeB) to allocate RBs(radio bearer) to eNB, the latter for eNB to assign RBs to the mobiles in the cell. For each phase, an optimization model and greedy algorithm are proposed. Optimization models aim to maximize the system performance while satisfying the constraints for both QoS and RB continuity. The greedy algorithms, like generic ones, move from a solution to a neighboring one having the best objective value among neighboring ones. From the numerous numerical experiments, the performance and characteristics of the algorithms are analyzed. This study is expected to play a volunteering role in radio resource management for the multi-cell SC-FDMA system.