• Title/Summary/Keyword: single-atom

Search Result 192, Processing Time 0.027 seconds

Synthesis, Characterization and Property Studies on a Dinuclear Copper(II) Complex with Dipyridine Derivate and Acetylacetone

  • Zhao, Pu Su;Guo, Zhi Yan;Sui, Jing;Wang, Jing;Jian, Fang Fang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.49-52
    • /
    • 2011
  • A dinuclear copper(II) complex of [$Cu_2(aceace)_4$(dipyph)] [aceace = acetylacetone, dipyph = 1,4-di(4-pyridylethene-2-yl-)benzene] has been synthesized and characterized by elemental analysis, IR and X-ray single crystal diffraction. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters a = 7.9584(16) $\AA$, b = 18.594(4) $\AA$, c = 15.063(4) $\AA$ $\beta=120.97(2)^o$ and $M_r$ = 807.85 ($C_{40}H_{44}Cu_2N_2O_8$), Z = 2. Each of the $Cu^{2+}$ ion adopts a square pyramid geometry and coordinates with four oxygen atoms from two aceace ligands and one nitrogen atom from dipyph bidentate ligand. Magnetic measurement shows that the Weiss constant and Curie constant for the title compound are -0.22 K and 0.1154 emu K/mol, respectively. Thermal stability data indicate that the title complex undergoes two steps decomposition and the residue is $Cu_2O_4$. In the potential range of -1.5 ~ 0.8 V, the title complex represents an irreversible electrochemical process.

Solvent Mediated Hydrogen-bonded Supramolecular Network of a Cu(II) Complex Involving N2O Donor Ligand and Terephthalate (N2O 주개 리간드와 테레프탈레이트를 포함하는 구리(II) 착물의 용매를 매개로 한 수소결합형 초분자 네트워크)

  • Chakraborty, Jishnunil
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.199-203
    • /
    • 2011
  • The title one-dimensional hydrogen-bonded coordination compound $[Cu^{II}(C_{13}H_{17}N_3OBr)(C_8H_5O_4)]{\cdot}2H_2O.CH_3OH$ has been synthesized and characterized by single crystal X-ray diffraction study. The monomeric unit contains a square-planar $Cu^{II}$ centre. The four coordination sites are occupied by a tridentate anionic Schiff base ligand (4-bromo-2-[(2-piperazin-1-yl-ethylimino)-methyl]-phenol) which furnishes an $N_2O$-donor set, with the fourth position being occupied by the oxygen atom of an adjacent terephthalate unit. Two adjacent neutral molecules are linked through intermolecular N-H---O and O-H---N hydrogen bonds and generate a dimeric pair. Each dimeric pair is connected with each other via discrete water and methanol molecules by hydrogen bonding to form a one-dimensional supramolecular network.

Novel Cationic 2-Phenylpyridine-based Iridium(III) Complexes Bearing an Ancillary Phosphine Ligand: Synthesis, Photophysics and Crystal Structure

  • Ma, Ai-Feng;Seo, Hoe-Joo;Jin, Sung-Ho;Yoon, Ung-Chan;Hyun, Myeong-Ho;Kang, Sung-Kwon;Kim, Young-Inn
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2754-2758
    • /
    • 2009
  • Three novel phosphorescent 2-phenylpyridine-based iridium(III) complexes, $[(ppy)_2Ir(P\^{}N)]PF6\;(1),\;[(dfppy)_2Ir(P\^{}N)]PF_6$ (2), and $[(dfmppy)_2 Ir(P\^{}N)]PF6$ (3), where $P\^{}N$ = 2-[(diphenylphosphino)methyl]pyridine (dppmp), were synthesized and characterized. The absorption, photoluminescence, cyclic voltammetry and thermal stability of the complexes were investigated. The complexes showed bright blue luminescences at wavelengths of 448 $\sim$ 500 nm at room temperature in $CHCl_3$ and revealed that the $\pi$-acceptor ability of the phosphorous atom in the ancillary dppmp ligand plays an important role in tuning emission color resulting in a blue-shift emission. The single crystal structure of $[(dfmppy))_2Ir(P\^N)]PF_6$ was determined using X-ray crystallography. The iridium metal center adopts a distorted octahedral structure coordinated to two dfmppy and one dppmp ligand, showing cis C-C and trans N-N chelate dispositions. There is a $\pi-\pi$ overlap between π electrons delocalized in the difluorophenyl rings.

The Structures of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite A and of Its iodine Sorption Complex (칼슘 이온으로 완전히 치환된 제올라이트 A의 탈수 구조와 칼슘 치환 제올라이트 A에 요오드가 흡착된 착물 구조)

  • Jang, Se-Bok;Han, Yong-Wook;Kim, Duk-Soo;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.1 no.2
    • /
    • pp.76-83
    • /
    • 1990
  • The structures of dehydrated fully Ca2+ _exchanged zeolite A (a: 12.2a3(2) A and of its iodine sorption complex (a=12.258(2) A) have been determined by single-crystal X-ray diffraction methods in the cubic space group. Pm3m at 21(1)℃.the structures were refined to final R(weighted) indices of 0.081 with 206 reflections and 0.084 with 173 reflections, respectively for which I>3 w (I). In each structure. six divalent cations are located on three different theefold axes associated with 6-ring oxygens. Dehydrated Ca2+_A sorbs ca. 6.0 diiodine molecules per unit cell at 80℃(vapor pressure of I: is ca. 14.3 Torr). Each iodine molecule makes a close approach. along its ahs to framework oxygen atom with I-I distance of 2.71(2) A, I-O distance of 3.32(3) k. and I-I-0=180℃. The result indicates that diiodine molecule forms charge transfer complex with framework oxygen.

  • PDF

On the Electrochemical Reduction of O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorthioate (Fenitrothion) Pesticide in Acetonitrile Solution (Acetonitrile 용액중에서 살충제 O, O-Dimethyl-O-(3-Methyl-4-Nitrophenyl)-Phosphorothioate (Fenitrothion)의 전기화학적 환원)

  • Il-Kwang Kim;Youn-Geun Kim;Hyun-Ja Chun
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.186-194
    • /
    • 1988
  • The electrochemical reduction of O,O-dimethyl-O-(3-methyl-4-nitrophenyl)-phosphorothioate (Fenitrothion) has been studied in acetonitrile solution containing surfactant micelle by direct current (DC)-differential pulse (DP) polarography, cyclic voltammetry (CV) and controlled potential coulometry (CPC). The partially reversible electron transfer-chemical reaction(EC, EC mechanism) of fenitrothion reduction proceeded by four electron transfer to form O,O-dimethyl-O-(3-methyl-4-hydroxyaminophenyl)-phosphorothioate which undergoes single bond of the phosphorus atom and phenoxy group cleaves to give p-amino-m-cresol and dimethyl thiophosphinic acid as major product by two electron transfer-protonation at higher negative potential. The polarograpic reduction waves shown to suppressed due to inhibitory effect of sodium lauryl sulfate micelle solution and split up on selectivity of anionic micelle effect in two step at the first reduction peak.

  • PDF

Preparation of Anatase TiO2 Thin Films with (OiPr)2Ti(CH3COCHCONEt2)2 Precursor by MOCVD

  • Bae, Byoung-Jae;Lee, Kwang-Yeol;Seo, Won-Seok;Miah, Md. Arzu;Kim, Keun-Chong;Park, Joon T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.11
    • /
    • pp.1661-1666
    • /
    • 2004
  • The reaction of titanium tetraisopropoxide with 2 equiv of N,N-diethyl acetoacetamide affords Ti($O^iPr)_2(CH_3COCHCONEt_2)_2$ (1) as colorless crystals in 80% yield. Compound 1 is characterized by spectroscopic (Mass and $^1H/^{13}C$ NMR) and microanalytical data. Molecular structure of 1 has been determined by a single crystal X-ray diffraction study, which reveals that it is a monomeric, cis-diisopropoxide and contains a six coordinate Ti(IV) atom with a cis($CONEt_2$), trans($COCH_3$) configuration (1a) in a distorted octahedral environment. Variable-temperature $^1H$ NMR spectra of 1 indicate that it exists as an equilibrium mixture of cis, trans (1a) and cis, cis (1b) isomers in a 0.57 : 0.43 ratio at -20$^{\circ}C$ in toluene-$d_8$ solution. Thermal properties of 1 as a MOCVD precursor for titanium dioxide films have been evaluated by thermal gravimetric analysis and vapor pressure measurement. Thin films of pure anatase titanium dioxide (after annealing above 500$^{\circ}C$ under oxygen) have been grown on Si(100) with precursor 1 in the substrate temperature range of 350- 500$^{\circ}$ using a bubbler-based MOCVD method.

Proton Conducting Crosslinked Membranes by Polymer Blending of Triblock Copolymer and Poly(vinyl alcohol)

  • Lee, Do-Kyoung;Park, Jung-Tae;Choi, Jin-Kyu;Roh, Dong-Kyu;Lee, Jung-Hyun;Shul, Yong-Gun;Kim, Jong-Hak
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.549-554
    • /
    • 2008
  • Proton conducting crosslinked membranes were prepared using polymer blends of polystyrene-b-poly(hydroxyethyl acrylate)-b-poly(styrene sulfonic acid) (PS-b-PHEA-b-PSSA) and poly(vinyl alcohol) (PVA). PS-b-PHEA-b-PSSA triblock copolymer at 28:21:51 wt% was synthesized sequentially using atom transfer radical polymerization (ATRP). FT-IR spectroscopy showed that after thermal ($120^{\circ}C$, 2 h) and chemical (sulfosuccinic acid, SA) treatments of the membranes, the middle PHEA block of the triblock copolymer was crosslinked with PVA through an esterification reaction between the -OH group of the membrane and the -COOH group of SA. The ion exchange capacity (IEC) decreased from 1.56 to 0.61 meq/g with increasing amount of PVA. Therefore, the proton conductivity at room temperature decreased from 0.044 to 0.018 S/cm. However, the introduction of PVA resulted in a decrease in water uptake from 87.0 to 44.3%, providing good mechanical properties applicable to the membrane electrode assembly (MEA) of fuel cells. Transmission electron microscopy (TEM) showed that the membrane was microphase-separated with a nanometer range with good connectivity of the $SO_3H$ ionic aggregates. The power density of a single $H_2/O_2$ fuel cell system using the membrane with 50 wt% PVA was $230\;mW/cm^2$ at $70^{\circ}C$ with a relative humidity of 100%. Thermogravimetric analysis (TGA) also showed a decrease in the thermal stability of the membranes with increasing PVA concentration.

Silver Ions in Zeolite A are Reduced by H$_2$ only at High Temperatures when 8-Rings are Blocked by Cs$^+$. Crystal Structures of Dehydrated $Ag_9Cs_3$-A Treated with H$_2$ at 23, 310, and 470${^{\circ}C}$

  • KIm, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.69-72
    • /
    • 1987
  • The structures of dehydrated $Ag_9Cs_3$-A treated with hydrogen gas at three different temperatures have been determined by single-crystal X-ray diffraction techniques. Their structures were solved and refined in the cubic space group Pm3m at 23(1) $^{\circ}C$. All crystals were ion exchanged in flowing streams of aqueous $AgNO_3$/$CsNO_3$ with a mole ratio 1:3.0 to achieve the desired crystal composition. The structures treated with hydrogen at $23^{\circ}C(a=12.288(1)\;{\AA})\;and\;310^{\circ}C(a=12.291(2)\;{\AA})$ refined to the final error indices R1 = 0.091 and R2 = 0.079, and 0.065 and 0.073, respectively, using the 216 and 227 reflections, respectively, for which I >3${\sigma}$(I). In both of these structures, eight $Ag^+$ ions are found nearly at 6-ring centers, and three $Cs^+$ ions lie at the centers of the 8-rings at sites of $D_{4h}$ symmetry. One $Ag^{\circ}atom$, presumably formed from the reduction of a $Ag^+$ ion by an oxide ion of a residual water molecule or of the zeolite framework during the dehydration process, is retained within the zeolite, perhaps in a cluster. In these two structures hydrogen gas could not enter the zeolite to reduce the $Ag^+$ ions because the large $Cs^+$ ions blocked all the 8-windows. However, hydrogen could slowly diffuse into the zeolite and was able to reach and to reduce about half of the $Ag^+$ ions in the structure only at high temperature ($470^{\circ}C$). The silver atoms produced migrated out of the zeolite framework, and the protons generated led to substantial crystal damage.

Two Crystal Structures of Ethylene and Acetylene Sorption Complexes of Dehydrated Fully $Ca^{2+}$-Exchanged Zeolite A

  • Jang, Se-Bok;Moon, Sung-Doo;Park, Jong-Yul;Kim, Un-Sik;Kim, Yang
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.1
    • /
    • pp.70-74
    • /
    • 1992
  • Two crystal structures of ethylene (a= 12.272(2) ${\AA}$) and acetylene (a = 12.245(2) ${\AA}$) sorption complexes of dehydrated fully $Ca^{2+}$-exchanged zeolite A have been determined by single crystal X-ray diffraction techniques in the cubic space group, Pm3m at $21(1)^{\circ}C$. Their complexes were prepared by dehydration at $360^{\circ}C$ and $2{\times}10^{-6}$ Torr for 2 days, followed by exposure to 200 Torr of ethylene gas and 120 Torr of acetylene gas both at $24^{\circ}C$, respectively. The structures were refined to final R (weighted) indices of 0.062 with 209 reflections and 0.098 with 171 reflections, respectively, for which I > 3${\sigma}$(I). The structures indicate that all six $Ca^{2+}$ ions in the unit cell are associated with 6-oxygen ring of the aluminosilicate framework. Four of these extend somewhat into the large cavity where each is coordinated to three framework oxide ions and an ethylene molecule and/or an acetylene molecule. The carbon to carbon distance in ethylene sorption structure is 1.48(7) ${\AA}$ and that in acetylene sorption structure 1.25(8) ${\AA}$. The distances between $Ca^{2+}$ ion and carbon atom are 2.87(5) ${\AA}$ in ethylene sorption structure and 2.95(7) ${\AA}$ in acetylene sorption structure. These bonds are relatively weak and probably formed by the electrostatic attractions between the bivalent $Ca^{2+}$ ions and the polarizable ${\pi}$-electron density of the ethylene and/or acetylene molecule.

Iodine Sorption Complexes of Partially Cobalt(II) Exchanged Zeolite A. Two Crystal Structures of $Co_{3.5}Na_5Si_{12}Al_{12}O_{48}\cdot2.5I_2\;and\;Co_{3.5}Na_5Si_{12}Al_{12}O_{48}\cdot5.0I_2$

  • Kim, Yang;Lee, Suk-Hee;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.5
    • /
    • pp.426-430
    • /
    • 1989
  • Two crystal structures of iodine sorption complexes of dehydrated partially Co(Ⅱ )-exchanged zeolite A, $Co_{3.5}Na_5-A{\cdot}xI_2$, x = 2.5 and 5.0, have been determined by single crystal X-ray diffraction techniques. Both structures were solved and refined in cubic space group, Pm3m at $21(1)^{\circ}C$. The structures of $Co_{3.5}Na_5-A{\cdot}2.5I_2$(a = 12.173(1) ${\AA}$) and $Co_{3.5}Na_5-A{\cdot}5.0I_2$(a = 12.130(1) ${\AA}$) were refined to the final error indices, $R_1$ = 0.081 and $R_2$ = 0.077 with 261 reflections and $R_1$ = 0.103 and $R_2$ = 0.112 with 225 reflections, respectively, for which I>3${\sigma}$(I). In both structures, 3.5 $Co^{2+}$ ions and 4.5 $Na^+$ ions per unit cell lie at two crystallographically different 6-ring positions. 0.5 $Na^+$ ion lines in an 8-oxygen ring plane. Dehydrated $Co_{3.5}Na_5$-A sorbs 2.5 iodine molecules per unit cell at $70^{\circ}C$ (vapor pressure of $I_2$ is ca. 8.3 torr) within 30 minutes and 5 iodine molecules per unit cell at $80^{\circ}C$ (vapor pressure of $I_2$ is ca. 14.3 torr) within 24 hours. Each iodine molecule makes a close approach, along its axis to framework oxygen atom with I-I-O = $175^{\circ}$.