• 제목/요약/키워드: single phase structure

검색결과 779건 처리시간 0.027초

P-형 Skutterudite 소재의 고온 열전물성 제어를 위한 공정 개발 (Process Development for Enhancement of High Temperature Thermoelectric Properties in a p-Type Skutterudite)

  • 류붕거;노창완;최순목
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.495-499
    • /
    • 2020
  • Power factor improvement at high temperatures has been a major research topic for the development of skutterudite thermoelectric materials. Here, we attempted to optimize the process parameters for manufacturing skutterudite materials, especially for p-type systems. We focused on the effect of aging time variation to maximize the high-temperature performance of the Ce-filled Fe3CoSb12 skutterudite system. The optimized aging time was concluded to be a key parameter for the formation of single-phase nanostructures in this p-type skutterudite system. The optimized condition was effective in reducing the bipolar effect at high temperature ranges by increasing the carrier concentration in the p-type system. To confirm the conclusions, the electrical conductivity, Seebeck coefficient, and power factor were measured. The results matched well with the microstructure and with those of an XRD analysis performed for the system.

공정개선을 통한 PZT 세라믹스의 합성 및 압전특성 (Synthesis and Piezoelectric Properties of PZT Ceramics will Improved Process)

  • 윤철수;송태권;박태곤;박인용;김명호
    • 한국전기전자재료학회논문지
    • /
    • 제14권11호
    • /
    • pp.904-911
    • /
    • 2001
  • High-density lead zirconate titanate(Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$, PZT) ceramics were fabricated by a new milling-precipitation(MP) process improved from the conventional solid state process. This process was progressed by a milling impregnation through mixing ZrO$_2$ and TiO$_2$ powders with lead nitrate(Pb(NO$_3$)$_2$) water solution in zirconia ball media, and then milling precipitation was induced from precipitation of PbC$_2$O$_4$ by adding ammonium of oxalate monohydrate((NH$_4$)$_2$C$_2$O$_4$$.$H$_2$O) as a precipitant. As a result of this process, single-phase perovskite structure was formed at the calcination temperature of 750$\^{C}$ for Pb(Zr$\_$0.53/Ti$\_$0.47/)O$_3$ powders. In addition, the highest density at the sintering temperature of 1100$\^{C}$ was obtained, because of the highly sinterable PZT Powders ground through the re-milling process. Piezoelectric and dielectric properties of sintered sample were improved by MP process.

  • PDF

Fabrication and characterization of CdS film, nanowires and nanobelts grown by VPE

  • Son, Moon-A;Lee, Dong-Jin;Kang, Tae-Won
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.69-69
    • /
    • 2010
  • The research is the structural and optical characteristics of the Cadmium Sulfide(CdS) film, nanowires and nanobelts grown on the $Al_2O_3$ substrate using the vapor phase epitaxy method. The field-emission scanning electron microscopy(FE-SEM) were used to identify the shape of the surface of the nanostructures and x-ray diffraction(XRD) and transmission electron microscopy (TEM) were used to evaluate the structural characterisitcs. As a result, the XRD was confirmed the CdS peak and the substrate peak and TEM showed single crystals with wurtzite hexagonal structure on the nanostructures. As for the optical characteristic of the nanostructures, photoluminescence(PL) and micro-raman spectrum were measured. The PL measurements confirmed the emission peak related bound exciton to neutral donor($D^0X$) peak and free exciton(FX) peak. The micro-raman spectrum showed that the peak of the nanostructures were similar to the pure crystalline CdS peak and each peak were overtone of LO phonon of the hexagonal CdS of the longitudinal optical(LO) phonon mode. Therefore, it is confirmed that the CdS nanostructures grown in this research have superior crystallinity.

  • PDF

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • 제2권2호
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Structural and Magnetic Properties of Co-Mn Ferrite Prepared by a Sol-gel Method

  • Kim, Woo Chul;Yi, Young Suk;Kim, Chul Sung
    • Journal of Magnetics
    • /
    • 제5권4호
    • /
    • pp.111-115
    • /
    • 2000
  • Ultrafine $Co_{0.9}Mn_{0.1}Fe_2O_4$ powders have been fabricated by a sol-gel method. Structural and magnetic properties of the powders were investigated by x-ray diffractometry, transmission electron microscopy (TEM), Mossbauer spectroscopy, and vibrating sample magnetometry (VSM). Co-Mn ferrite powders that were fired at and above 773 K contained only a single spinel phase and behaved ferrimagnetically. Powders fired at 673 and 723 K had a spinel structure and were mixed paramagnetic and ferrimagnetic in nature. The magnetic behavior of Co-Mn ferrite powders fired at and above 873 K showed that an increase of the firing temperature yielded a decrease in the coercivity and an increase in the saturation magnetization. The maximum saturation magnetization and coercivity of Co-Mn ferrite powders were 66.7 emu/g and 1523 Oe, respectively, Mossbauer spectra of the powder fired at 923 K were taken at various temperatures ranging from 13 to 850 K. The iron ions.at both A (tetrahedral) and B (octahedral) sites were found to be in ferric high-spin states. The Nel temperature $T_N$ was found to be 850 $\pm$ 2 K. Debye temperatures far A and B sites were found to be $\Theta_A = 757 \pm$5K and $Theta_B = 282 \pm$5 K, respectively.

  • PDF

고연색 LED용 적색 Sr2Si5N8:Eu2+ 형광체의 합성 및 발광특성 연구 (Synthesis and Luminescence of Sr2Si5N8:Eu2+ Red Phosphor for High Color-Rendering White LED)

  • 이성훈;김종수;강태욱;류종호;이상남
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.11-15
    • /
    • 2017
  • Red phosphors, $Sr_2Si_5N_8:Eu^{2+}$, were synthesized as a single-phase crystal structure by optimizing carbon and $Eu^{2+}$ contents in a carbothermal reduction nitridation method. With increasing $Eu^{2+}$ contents, the photoluminescence spectra were red-shifted from 600 nm peak for 1 mol% for to 700 nm for 7 mol%. It was suggested that this red shift is attributed to the energy transfer from one low-energy sited $Eu^{2+}$ (1) to other high-energy sited $Eu^{2+}$ (2). Finally, the best red sample (620 nm emission peak and 80 nm half width for 3 mole% of $Eu^{2+}$) was packaged on a Blue LED together with two additional green and yellow phosphors, the fabricated White LED showed a high color-rendering index of 90 and white color coordinates of x= 0.321 and y = 0.305.

  • PDF

용융 알루미늄 도금된 절탄기 강재 튜브의 고상입자 침식 특성 (Solid Particle Erosion Properties of Hot-Dip Aluminized Economizer Steel Tube)

  • 박일초;한민수
    • Corrosion Science and Technology
    • /
    • 제20권6호
    • /
    • pp.384-390
    • /
    • 2021
  • In this paper, durability evaluation and surface damage mechanism were investigated through solid particle erosion (SPE) test after applying hot-dip aluminizing (HDA) technology for the purpose of maintenance of marine economizer tube. Damaged surface shape was analyzed using SEM and 3D microscope. Compositional changes and microstructure of the HDA layer were analyzed through EDS and XRD. Durability was evaluated by analyzing weight loss and surface damage depth after SPE. HDA was confirmed to have a two-layer structure of Al and Al5Fe2. HDA+HT was made into a single alloy layer of Al5Fe2 by diffusion treatment. In the microstructure of HDA+HT, void and crack defect were induced during the crystal phase transformation process. The SPE damage mechanism depends on material properties. Plastic deformation occurred in the substrate and HDA due to ductility, whereas weight loss due to brittleness occurred significantly in HDA+HT. As a result, the substrate and HDA showed better SPE resistance than HDA+HT.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Mechanical and Structural Behaviors of HfN Thin Films Fabricated by Direct Current and Mid-frequency Magnetron Sputtering

  • Sung-Yong Chun
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.30-35
    • /
    • 2023
  • Hafnium nitride (HfN) thin films were fabricated by mid-frequency magnetron sputtering (mfMS) and direct current magnetron sputtering (dcMS) and their mechanical and structural properties were compared. In particular, changes in the HfN film properties were observed by changing the pulse frequency of mfMS between 5 kHz, 15 kHz, and 30 kHz. The crystalline structure, microstructure, 3D morphology, and mechanical properties of the HfN films were compared by x-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and nanoindentation tester, respectively. HfN film deposited by mfMS showed a smoother and denser microstructure as the frequency increased, whereas the film deposited by dcMS showed a rough and sloppy microstructure. A single δ-HfN phase was observed in the HfN film made by mfMS with a pulse frequency of 30 kHz, but mixed δ-HfN and HfN0·4 phases were observed in the HfN film made by dcMS. The mechanical properties of HfN film made by mfMS were improved compared to film made by dcMS.

Mode analysis and low-order dynamic modelling of the three-dimensional turbulent flow filed around a building

  • Lei Zhou;Bingchao Zhang;K.T. Tseb
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.381-398
    • /
    • 2024
  • This study presents a mode analysis of 3D turbulent velocity data around a square-section building model to identify the dynamic system for Kármán-type vortex shedding. Proper orthogonal decomposition (POD) was first performed to extract the significant 3D modes. Magnitude-squared coherence was then applied to detect the phase consistency between the modes, which were roughly divided into three groups. Group 1 (modes 1-4) depicted the main vortex shedding on the wake of the building, with mode 2 being controlled by the inflow fluctuation. Group 2 exhibited complex wake vortexes and single-sided vortex phenomena, while Group 3 exhibited more complicated phenomena, including flow separation. Subsequently, a third-order polynomial regression model was used to fit the dynamics system of modes 1, 3, and 4, which revealed average trend of the state trajectory. The two limit cycles of the regression model depicted the two rotation directions of Kármán-type vortex. Furthermore, two characteristic periods were identified from the trajectory generated by the regression model, which indicates fast and slow motions of the wake vortex. This study provides valuable insights into 3D mode morphology and dynamics of Kármán-type vortex shedding that helps to improve design and efficiency of structures in turbulent flow.