• 제목/요약/키워드: single nucleotide polymorphism(SNP)

검색결과 571건 처리시간 0.032초

Interferon-γ and Interleukin-10 Gene Polymorphisms are not Predictors of Chronic Hepatitis C (Genotype-4) Disease Progression

  • Bahgat, Nermine Ahmed;Kamal, Manal Mohamed;Abdelaziz, Ashraf Omar;Mohye, Mohamed Ahmed;Shousha, Hend Ibrahim;ahmed, Mae Mohamed;Elbaz, Tamer Mahmoud;Nabil, Mohamed Mahmoud
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.5025-5030
    • /
    • 2015
  • Immunoregulatory cytokines have an influence on hepatitis C virus (HCV) infection outcome. This study aimed to determine whether single nucleotide polymorphisms (SNP) in IFN- ${\gamma}$ and IL-10 genes are associated with susceptibility and/or are markers of prognosis regarding chronic hepatitis C outcomes. IFN ${\gamma}$ (+874T/A) and IL-10 (-1082G/A) genotypes were determined in 75 HCV genotype 4 patients with different disease severities (chronic hepatitis, n=25, liver cirrhosis and hepatocellular carcinoma (HCC) on top of liver cirrhosis, n=50) and 25 healthy participants using allele-specific polymerase chain reaction. No statistical differences in allele or genotype distributions of IFN ${\gamma}$ and IL-10 genes were detected between patients and controls or between patientgroups. No significant difference in the frequency of IL-10 SNP at position -1082 or IFN-${\gamma}$ at position +874T/A was found between chronic HCV genotype 4 and with progression of disease severity in liver cirrhosis or HCC. In conclusion; interferon-${\gamma}$ and interleukin-10 gene polymorphisms are not predictors of disease progression in patients with chronic hepatitis C (Genotype-4).

Rapid Origin Determination of the Northern Mauxia Shrimp (Acetes chinensis) Based on Allele Specific Polymerase Chain Reaction of Partial Mitochondrial 16S rRNA Gene

  • Kang, Jung-Ha;Noh, Eun-Soo;Park, Jung-Youn;An, Chel-Min;Choi, Jung-Hwa;Kim, Jin-Koo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.568-572
    • /
    • 2015
  • Acetes chinensis is an economically important shrimp that belongs to the Sergestidae family; following fermentation, A. chinensis' economic value, however, is low in China, and much of the catch in China is exported to Korea at a low price, thus leading to potential false labeling. For this reason, we developed a simple method to identify A. chinensis' origin using allele-specific polymerase chain reaction (PCR). Ten single nucleotide polymorphisms (SNPs) were identified from partial (i.e., 570 bp) DNA sequence analysis of the mitochondrial 16s rRNA gene in 96 Korean and 96 Chinese individual shrimp. Among 10 SNP sites, four sites were observed in populations from both countries, and two sites located in the middle with SNP sites at their 3'-ends were used to design allele-specific primers. Among the eight internal primers, the C220F primer specific to the Chinese A. chinensis population amplified a DNA fragment of 364 bp only from that population. We were able to identify the A. chinensis population origin with 100% accuracy using multiplex PCR performed with two external primers and C220F primers. These results show that the 16S rRNA gene that is generally used for the identification of species can be used for the identification of the origin within species of A. chinensis, which is an important finding for the fair trade of the species between Korea and China.

In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome

  • Shin, Donghyun;Oh, Jae-Don;Won, Kyeong-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권8호
    • /
    • pp.1150-1159
    • /
    • 2018
  • Objective: Non-synonymous single nucleotide polymorphisms (nsSNPs) were identified in Berkshire selective sweep regions and then were investigated to discover genetic nsSNP mechanisms that were potentially associated with Berkshire domestication and meat quality. We further used bioinformatics tools to predict damaging amino-acid substitutions in Berkshire-related nsSNPs. Methods: nsSNPs were examined in whole genome resequencing data of 110 pigs, including 14 Berkshire pigs, generated using the Illumina Hiseq2000 platform to identify variations that might affect meat quality in Berkshire pigs. Results: Total 65,550 nsSNPs were identified in the mapped regions; among these, 319 were found in Berkshire selective-sweep regions reported in a previous study. Genes encompassing these nsSNPs were involved in lipid metabolism, intramuscular fatty-acid deposition, and muscle development. The effects of amino acid change by nsSNPs on protein functions were predicted using sorting intolerant from tolerant and polymorphism phenotyping V2 to reveal their potential roles in biological processes that may correlate with the unique Berkshire meat-quality traits. Conclusion: Our nsSNP findings confirmed the history of Berkshire pigs and illustrated the effects of domestication on generic-variation patterns. Our novel findings, which are generally consistent with those of previous studies, facilitated a better understanding of Berkshire domestication. In summary, we extensively investigated the relationship between genomic composition and phenotypic traits by scanning for nsSNPs in large-scale whole-genome sequencing data.

Extent of linkage disequilibrium and effective population size of Korean Yorkshire swine

  • Shin, Donghyun;Won, Kyeong-Hye;Kim, Sung-Hoon;Kim, Yong-Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권12호
    • /
    • pp.1843-1851
    • /
    • 2018
  • Objective: We aimed to characterize linkage disequilibrium (LD) and effective population size ($N_e$) in a Korean Yorkshire population using genomic data from thousands of individuals. Methods: We genotyped 2,470 Yorkshire individuals from four major Grand-Grand-Parent farms in Korea using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 single nucleotide polymorphisms (SNPs) located across all chromosomes and mitochondria. We estimated the expected LD and inferred current $N_e$ as well as ancestral $N_e$. Results: We identified 61,565 SNP from autosomes, mitochondria, and sex chromosomes and characterized the LD of the Yorkshire population, which was relatively high between closely linked markers (>0.55 at 50 kb) and declined with increasing genetic distance. The current $N_e$ of this Korean Yorkshire population was 122.87 (106.90; 138.84), while the historical $N_e$ of Yorkshire pigs suggests that the ancestor $N_e$ has decreased by 99.6% over the last 10,000 generations. Conclusion: To maintain genetic diversity of a domesticated animal population, we must carefully consider appropriate breed management methods to avoid inbreeding. Although attenuated selection can affect short-term genetic gain, it is essential for maintaining the long-term genetic variability of the Korean Yorkshire population. Continuous and long-term monitoring would also be needed to maintain the pig population to avoid an unintended reduction of $N_e$. The best way to preserve a sustainable population is to maintain a sufficient $N_e$.

한우 Lipoprotein Lipase 유전자 Intron 5번의 Polymorphism과 경제 형질과의 관련성 분석 (Association Between the Polymorphism on Intron 5 of the Lipoprotein Lipase Gene and Carcass Traits in Hanwoo (Korean cattle))

  • 이한주;이승환;조용민;윤호백;전봉균;오성종;권무식;윤두학
    • Journal of Animal Science and Technology
    • /
    • 제46권6호
    • /
    • pp.947-956
    • /
    • 2004
  • 생물체의 체내 지방대사에 아주 중요하게 작용하는 LPL의 유전자 구조변이가 한우의 경제형질에 미치는 효과를 구명하고자, 사람 등 포유류에서 주요한 변이부위로 인식되어 온 LPL유전자의 exon 5${\sim}$exon 6 영역에서 구조변이를 탐색하였다. 부모가 각기 다른 한우 24두를 이용하여 PCR 증폭산물 1674 bp (exon 5${\sim}$exon 6)에서 총 8 좌위의 SNP 검출하였는데, 이는 SNP 검출율이 약 1SNP/210bp로 기존 SNP 검출율 보다 비교적 높은 비율이며, 검출된 SNP들 간에 95% 이상의 높은 연관(linkage) 관계를 보여 비교적 잘 보존되어 있는 영역으로 사료된다. 그리고 검출된 SNP를 PCR-RFLP 기법을 이용하여 표현형질 기록치를 확보한 한우 33차 후대검정축 129두의 유전자형을 결정하였다. 그 결과 intron 5번의 제한효소 Hae III로 처리한 823A\longrightarrowG 변이부위가 측정된 모든 도체형질에서 유전자형에 따라 뚜렷한 차이를 보였으며, 특히 근내지방도와 통계적 유의성이 인정되었다(p<0.05). 사람 및 생쥐에서 LPL의 촉매활성부위를 암호화하는 exon 5번 및 6번에서의 변이는 LPL의 활성도에 영향을 미치며, 이는 혈액내의 중성지방농도 및 지방대사에 작용한다는 보고가 있다. 이들 변이구조와 95% 이상 강한 연관을 보이는 intron 5번의 구조변이는 근내지방도와 유의적으로 관찰되었다. 앞으로, intron 5번의 823A\longrightarrowG 변이가 어떤 근거로 근내지방도와 유의적으로 나타났는지 그 근거를 증명할 수 있는 추가적인 실험이 필요한 것으로 사료된다.

Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석 (Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle)

  • 안나래;손주환;박종은;채한화;장길원;임다정
    • 생명과학회지
    • /
    • 제28권11호
    • /
    • pp.1255-1261
    • /
    • 2018
  • DNA 염기서열의 발전과 많은 단일염기서열변이 정보(Single Nucleotide polymorphism, SNP)의 발굴은 유전 분석을 가능하게 만들었다. 단일염기서열변이 정보가 사람의 유전체뿐만 아니라 가축의 유전체에서도 이용할 수 있게 됨에 따라서 SNP 칩 마커를 통해 유전자형의 분석이 가능하게 되었다. 여러 유전자형 대치프로그램 중에서도 Minimac3 소프트웨어는 비교적 정확성이 높고, 계산의 효율성을 위해 분석을 단순화하여 유전자형의 결측치 대치 분석 시간을 단축시킨다. 따라서 본 연구에서는 Minimac3 프로그램을 사용하여 한우 1,226두 770K SNP 칩 데이터와 311두 차세대 염기서열분석 데이터를 이용하여 유전자형 결측치 대치를 실행해 보았다. 그 결과 염색체별 정확도는 약 94~96%의 정확도를 나타냈으며, 개체별 정확도는 약 92~98%의 정확도를 나타냈다. 유전자형의 결측치 대치의 완료 후, R Square ($R^2$) 값이 0.4 이상인 SNP는 총 SNP의 약 91%였다. $R^2$ 값이 0.6 이상인 SNP는 84%였으며, $R^2$ 값이 0.8 이상인 SNP는 70%였다. 대립유전자형빈도 차이를 기준으로 (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3), (0.3, 0.4), (0.4, 0.5)의 7구간에 해당하는 $R^2$ 값은 64~88%였다. 결측치 대치의 총 분석 시간은 약 12시간이 걸렸다. 추후의 유전체 데이터 세트의 크기와 복잡성이 증가하는 SNP 칩 연구에서 Minimac3를 사용한 유전체 결측치 대치법은 한우의 판별에 있어서 칩 데이터의 신뢰도를 향상 시킬 수 있을 것으로 본다.

The RTEL1 rs6010620 Polymorphism and Glioma Risk: a Meta-analysis Based on 12 Case-control Studies

  • Du, Shu-Li;Geng, Ting-Ting;Feng, Tian;Chen, Cui-Ping;Jin, Tian-Bo;Chen, Chao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10175-10179
    • /
    • 2015
  • Background: The association between the RTEL1 rs6010620 single nucleotide polymorphism (SNP) and glioma risk has been extensively studied. However, the results remain inconclusive. To further examine this association, we performed a meta-analysis. Materials and Methods: A computerized search of the PubMed and Embase databases for publications regarding the RTEL1 rs6010620 polymorphism and glioma cancer risk was performed. Genotype data were analyzed in a meta-analysis. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analyses, tests of heterogeneity, cumulative meta-analyses, and assessments of bias were performed in our meta-analysis. Results: Our meta-analysis confirmed that risk with allele A is lower than with allele G for glioma. The A allele of rs6010620 in RTEL1 decreased the risk of developing glioma in the 12 case-control studies for all genetic models: the allele model (OR=0.752, 95%CI: 0.715-0.792), the dominant model (OR=0.729, 95%CI: 0.685-0.776), the recessive model (OR=0.647, 95%CI: 0.569-0.734), the homozygote comparison (OR=0.528, 95%CI: 0.456-0.612), and the heterozygote comparison (OR=0.761, 95%CI: 0.713-0.812). Conclusions: In all genetic models, the association between the RTEL1 rs6010620 polymorphism and glioma risk was significant. This meta-analysis suggests that the RTEL1 rs6010620 polymorphism may be a risk factor for glioma. Further functional studies evaluating this polymorphism and glioma risk are warranted.

Sequence Characterization, Expression Profile, Chromosomal Localization and Polymorphism of the Porcine SMPX Gene

  • Guan, H.P.;Fan, B.;Li, K.;Zhu, M.J.;Yerle, M.;Liu, Bang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.931-937
    • /
    • 2006
  • The full-length cDNA of the porcine SMPX gene was obtained by the rapid amplification of cDNA ends (RACE). The nucleotide sequences and the predicted protein sequences share high sequence identity with both human and mouse. The promoter of SMPX was sequenced and then analyzed to find the promoter binding sites. The reverse transcriptase-polymerase chain reaction (RT-PCR) revealed that SMPX has a high level of expression in heart and skeletal muscle, a very low expression in lung and spleen and no expression in liver, kidney, fat and brain. Moreover, SMPX has a differential expression level in skeletal muscle, the expression in 65-day embryos being higher than other stages. The porcine SMPX was mapped to SSCXp24 by using a somatic cell hybrid panel (SCHP) and was found closely linked to SW1903 using the radiation hybrid panel IMpRH. An A/G single nucleotide polymorphism (PCR-RFLP) in the 3'-untranslated region (3'-UTR) was detected in eight breeds. The analysis of allele frequency distribution showed that introduced pig breeds (Duroc and Large White) have a higher frequency of allele A while in the Chinese indigenous pig breeds (Qingping pig, Lantang pig, YushanBlack pig, Large Black-White pig, Small Meishan) have a higher frequencies of allele G. The association analysis using an experimental population (188 pigs), which included two cross-bred groups and three pure-blood groups, suggested that the SNP genotype was associated with intramuscular fat content.

Rs895819 within miR-27a Might be Involved in Development of Non Small Cell Lung Cancer in the Chinese Han Population

  • Ma, Ji-Yong;Yan, Hai-Jun;Yang, Zhen-Hua;Gu, Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권5호
    • /
    • pp.1939-1944
    • /
    • 2015
  • MicroRNA-27a (miR-27a) is deemed to be an oncogene that plays an important role in development of various cancers, and single nucleotide polymorphism (SNP) of miR-27a can influence the maturation or aberrant expression of hsa-miR27a, resulting in increased risk of cancer and poor prognosis for non-small cell lung cancer (NSCLC). This study aimed to assess the effects of rs895819 within miR-27a on susceptibility and prognosis of NSCLC patients in 560 clinical confirmed cases and 568 healthy check-up individuals. Adjusted odds/hazard ratios (ORs/HRs) and 95% confidential intervals (CIs) were calculated to evaluate the association between rs895819 and the risk and prognosis of NSCLC. The results showed that allele A and genotype GG of rs895819 were significantly associated with an increased risk of NSCLC (38.9% vs 30.8%, adjusted OR=1.26, 95%CI=1.23-1.29 for allele G vs A; 18.1% vs 11.7%, adjusted OR=1.67, 95%CI=1.59-1.75 for genotype GG vs AA). Moreover, positive associations were also observed in dominant and recessive models (53.7% vs 49.9%, adjusted OR=1.17, 95%CI=1.13-1.20 for GG/AG vs AA; 18.1% vs 11.7%, adjusted=1.65, 95%CI=1.58-1.73). However, no significant association was found between rs895819 and the prognosis of NSCLC in genotype, dominant and recessive models. These results suggested that miR-27a might be involved in NSCLC carcinogenesis, but not in progression of NSCLC. The allele G, genotype GG and allele G carrier (GG/AG vs AA) of rs895819 might be genetic susceptible factors for NSCLC. Further multi-central, large sample size and well-designed prospective studies as well as functional studies are warranted to verify our findings.

Development of an efficient genotyping-by-sequencing (GBS) library construction method for genomic analysis of grapevine

  • Jang, Hyun A;Oh, Sang-Keun
    • 농업과학연구
    • /
    • 제44권4호
    • /
    • pp.495-503
    • /
    • 2017
  • Genotyping-by-sequencing (GBS) is an outstanding technology for genotyping and single nucleotide polymorphism (SNP) discovery compared to next generation sequencing (NGS) because it can save time when analyzing large-scale samples and carries a low cost per sample. Recently, studies using GBS have been conducted on major crops and, to a greater extent, on fruit crops. However, many researchers have some problems due to low GBS efficiency resulting from low quality GBS libraries. To overcome this limitation, we developed an efficient GBS library construction method that regulates important conditions such as restriction enzymes (RE) digestion and a PCR procedure for grapevine. For RE digestion, DNA samples are digested with ApeKI (3.6U) at $75^{\circ}C$ for 5 hours and adapters are ligated to the ends of gDNA products. To produce suitable PCR fragments for sequencing, we modified the PCR amplification conditions; temperature cycling consisted of $72^{\circ}C$ (5 min), $98^{\circ}C$ (30 s), followed by 16 cycles of $98^{\circ}C$ (30 s), $65^{\circ}C$ (30 s), $72^{\circ}C$ (20 s) with a final extension step. As a result, we had obtained optimal library construct sizes (200 to 400 bp) for GBS analysis. Furthermore, it not only increased the mapping efficiency by approximately 10.17% compared to the previous method, but also produced mapped reads which were distributed equally on the19 chromosomes in the grape genome. Therefore, we suggest that this system can be used for various fruit crops and is expected to increase the efficiency of various genomic analysis performed.