• Title/Summary/Keyword: single hydrogen bonding

Search Result 55, Processing Time 0.023 seconds

Theoretical Study on the Hydrogen-Bonding Effect of H2On-H2Om (n=1-4, m=1-4) Dimers (H2On-H2Om (n=1-4, m=1-4) 이중합체의 수소결합에 따른 구조적 특성 및 결합에너지에 관한 이론 연구)

  • Song, Hui-Seong;Seo, Hyun-Il;Shin, Chang-Ho;Kim, Seung-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.117-124
    • /
    • 2015
  • The DFT and ab initio calculations have been performed to elucidate hydrogen interaction of hydrogen polyoxide dimers, $H_2O_n-H_2O_m$ (n=1-4, m=1-4). The optimized geometries, harmonic vibrational frequencies, and binding energies are predicted at various levels of theory. The harmonic vibrational frequencies of the molecules considered in this study show all real numbers implying true minima. The higher-order correlation effect were discussed to compare MP2 result with CCSD(T) single point energy. The binding energies were corrected for the zero-point vibrational energy (ZPVE) and basis set superposition errors (BSSE). The largest binding energy predicted at the CCSD(T)/cc-pVTZ level of theory is 8.18 kcal/mol for $H_2O_4-H_2O_3$ and the binding energy of water dimer is predicted to be 3.00 kcal/mol.

The Crystal and Molecular Structure of Thiamphenicol

  • Shin, Whan-chul;Kim, Sang-soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.2
    • /
    • pp.79-83
    • /
    • 1983
  • The structure of thiamphenicol, one of the congeners of chloramphenicol which is a well-known antibiotic, has been determined by single crystal x-ray diffraction techniques. The crystal structure was determined using diffractometer data obtained by the $2{\theta}:{\omega}$ scan technique with $MoK{\alpha}$ radiation from a crystal having space group symmetry $P2_{1}2_{1}2_{1}$, and unit cell parameters a = 5.779, b = 15.292 and c = 17.322 ${\AA}$ . The structure was solved by direct methods and refined by least squares to an R = 0.070 for the 2116 reflections. The overall V-shaped conformation of thiamphenicol revealed in this study is consistent with those from the crystallographic studies and the proposed models from the theoretical and nmr studies of chloramphenicol. However there is no intramolecular hydrogen bond and the propanediol moiety is fully extended in the thiamphenicol molecule, while the crystal structures of chloramphenicol show the existence of the hydrogen bond between the two hydroxyl groups of the propanediol moiety forming an acyclic ring. All of the thiamphenicol molecules in the crystal are linked by a threedimensional hydrogen bonding network.

Coordination of an Amino Alcohol Schiff Base Ligand Toward Cd(II)

  • Mardani, Zahra;Hakimi, Mohammad;Moeini, Keyvan;Mohr, Fabian
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • A potentially tetradentate Schiff base ligand, 2-((2-((pyridin-2-ylmethylene)amino)ethyl)amino)ethan-1-ol (PMAE), and its cadmium(II) complex, [$Cd(PMAE)I_2$] (1), were prepared and characterized by elemental analysis, FT-IR, Raman, $^1H$ and $^{13}C$ NMR spectroscopies and single-crystal X-ray diffraction. In the crystal structure of 1, the cadmium atom has a slightly distorted square-pyramidal geometry and a $CdN_3I_2$ environment in which the PMAE acts as an $N_3$-donor. In the crystal packing of the complex, the alcohol and amine groups of the coordinated ligands participate in hydrogen bonding with iodide ions and form $R^2{_2}(14)$ and $R^2{_2}(8)$ hydrogen bond motifs, respectively. In addition to the hydrogen bonds, the crystal network is stabilized by ${\pi}-{\pi}$ stacking interactions between pyridine rings. The thermodynamic stability of the isolated ligand and its cadmium complex along with their charge distribution patterns were studied by DFT and NBO analysis.

Crystal Structure of Thiamin Tetrahydrofurfuryl Disulfide

  • Shin, Whan-Chul;Kim, Young-Chang
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.5
    • /
    • pp.331-334
    • /
    • 1986
  • The crystal structure of thiamin tetrahydrofurfuryl disulfide, one of the ring-opened derivatives of thiamin, has been determined by the X-ray diffraction methods. The crystal is monoclinic with cell dimensions of a = 8.704 (1), b = 11.207 (2), c = 21.260 (3) ${\AA}$ and ${\beta}$ = 92.44 (2)$^{circ}$, space group P2$_{1}$/c and Z = 4. The structure was solved by direct methods and refined to R = 0.076 for 1252 observed reflections measured on a diffractometer. The molecule assumes a folded conformation in which the pyrimidine and the tetrahydrofurfuryl rings are on the same side of the ethylenic plane. The pyrimidinyl, N-formyl and ethylenic planes are mutually perpendicular to each other and the N(3)-C(4) bond retains a single bond character. The structure is stabilized by an intramolecular N(4'${\alpha})-H{\cdots}O(2{\alpha}$) hydrogen bond. The molecules are connected via N(4'${\alpha}$)-H{\cdots}(N3')$ and O(5${\gamma})-H{\cdots}(N1')$ hydrogen bonds, forming a two-dimensional hydrogen-bonding network. The tetrahydrofurfuryl ring is dynamically disordered. The overall conformation as well as the packing mode is very similar to that of thiamin propyl disulfide.

Interfacial Properties of Electrodeposited Carbon Fiber/Epoxy Composites using Electro-Micromechanical Techniques and Nondestructive Evaluations

  • Park, Joung-Man;Lee, Sang-Il
    • Macromolecular Research
    • /
    • v.9 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Interfacial adhesion and nondestructive behavior of electrodeposited (ED) carbon fiber rein-forced composites were evaluated using electro-micromechanical techniques and acoustic emission (AE). The interfacial shear strength (IFSS) of the ED carbon fiber/epoxy composites was higher than that of the untreated fiber. This might be expected because of the possibility of chemical or hydrogen bonding in an electrically adsorbed polymeric interlayer. The logarithmic electrical resistivity of the untreated single-carbon fiber composite increased suddenly to infinity when fiber fracture occurred, whereas that of the ED composite increased relatively gradually to infinity. This behavior may arise from the retarded fracture time due to enhanced IFSS. In single- and ten-carbon fiber composites, the number of AE signals coming from interlayer failure of the ED carbon fiber composite was much larger than that of the untreated composite. As the number of the each first fiber fractures increased in the ten-carbon fiber composite, the electrical resistivity increased stepwise, and the slope of the logarithmic electrical resistance increased.

  • PDF

EXCITED-STATE INTRAMOLECULAR PROTON TRANSFER IN DICOUMAROL, A $CH_2$-BRIDGED DIMER OF 4-HYDROXYCOUMARIN

  • Cho, Dae-Won
    • Journal of Photoscience
    • /
    • v.2 no.1
    • /
    • pp.13-18
    • /
    • 1995
  • The steady-state emission spectra of dicoumarol (DC) in ethanol and EPA have been examined at various temperatures (77-298 K). At room temperature, a fluorescence spectrum of DC in ethanol shows a emission maximum at 350 nm. In EPA a Stokes-shifted emission band appears around 470 nm in addition to the 350 nm emission, and its intensity is enhanced as temperature decreases. This emission is attributed to a zwitterionic tautomer of DC formed by a single excited-state intramolecular proton transfer (ESIPT) along the internal hydrogen-bonding. The fluorescence lifetimes have been measured at 350 and 450 nm as a function of temperature. The fluorescence decay at 350 nm is single exponential at any temperature, whereas the one at 450 nm becomes biexponential at temperatures below 250 K. These results are discussed in terms of a conformational change followed by the ESIPT. The activation energy barrier for the conformational change has been determined to be 3.7 $\pm$ 0.2 kJ/mole.

  • PDF

Synthesis, Structure and Biological Properties of a Novel Copper (II) Supramolecular Compound Based on 1,2,4-Triazoles Derivatives

  • Qiu, Guang-Mei;Wang, Cui-Juan;Zhang, Ya-Jun;Huang, Shuai;Liu, Xiao-Lei;Zhang, Bing-Jun;Zhou, Xian-Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2603-2608
    • /
    • 2012
  • A novel mononuclear supramolecule of copper(II) has been synthesized with Ippyt ligand (Ippyt=3-(4'-imidazole phenyl)-5-(pyrid-2''-yl)-1,2,4-triazole) (1). Compound 1, namely [$Cu(Ippyt)_2(H_2O)_2$], has been characterized by single-crystal X-ray diffraction, IR spectrum, elemental analysis and thermogravimetric analysis. Structure determination reveals that the elongated-octahedral geometry is formed in the vicinity of the copper (II) atom being coordinated by four nitrogen atoms from two Ippyt ligands occupying the equatorial position and two oxygen atoms from two coordinated water molecules in the axial position, which together form the $N_4O_2$ donor set. Hydrogen bonding interactions between nitrogen and oxygen atoms result in the set up of a supramolecular network architecture. Biological properties including antibacterial activity and superoxide dismutase (SOD) mimetic activity of compound 1 have been investigated by agar diffusion method and the modified Marklund method, respectively. The results indicate that compound 1 exhibits a stronger antibacterial efficiency than the parent ligand and it also has a certain radical-scavenging activity.

Binding Models of Flavonols to Human Vascular Endothelial Growth Factor Receptor 2

  • Lee, Jee-Young;Jeong, Ki-Woong;Kim, Woong-Hee;Heo, Yong-Seok;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.2083-2086
    • /
    • 2009
  • Human vascular endothelial growth factor receptor 2 (hVEGFR2) is an important signaling protein involved in angiogenesis and attractive drug target in cancer therapy. It has been reported that flavonols, a class of flavonoids, have anti-angiogenic activity in various cancer cell lines. We performed receptor-oriented pharmacophore based in silico screening for identification of hVEGFR2 inhibitors from flavonol database. By comparing with three X-ray complex structures of hVEGFR2 and its inhibitors, we evaluated the specific interactions between inhibitors and receptors and determined a single pharmacophore map. This map consisted of four features, a hydrogen bonding acceptor (HBA) on Cys917, two hydrogen bonding donors on Glu917 (HBD1) and Glu883 (HBD2), and one hydrophobic interaction (Lipo) with Val846, Ala864, Val897, Val914 and Phe1045 of hVEGFR2. Using this map, we searched a flavonol database including 9 typical flavonols and proposed that five flavonols, kaempferol, quercetin, fisetin, morin, and rhamnetin can be potent inhibitors of hVEGFR2. 3-OH of C-ring and 4’-OH of B-ring of flavonols are the essential features for hVEGFR2 inhibition. This study will be helpful for understanding the mechanism of inhibition of hVEGFR2 by natural products.

Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) (폴리아스팔트아미드와 폴리(비닐 피롤리돈)의 상용블렌드 및 Semi-IPN 젤 제조)

  • Meng, Fan;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.617-621
    • /
    • 2012
  • PHEAs [${\alpha}$,${\beta}$-poly(2-hydroxyethyl-DL-aspartamides)], a class of poly(amino acid), have been widely studied as biodegradable and biocompatible polymers for potential biomedical and pharmaceutical applications. In this study, we investigated a homogeneous blend of PHEA with poly(N-vinyl pyrrolidone) (PNVP) and its semi-IPN (semi-interpenetrating polymer network) gels. Blend films were prepared by a solution casting method. The resulting blends were totally transparent over the whole composition ranges and the single $T_g$, changing monotonously with composition, was observed by DSC to confirm the miscibility between these two polymers. FTIR was used to discuss the possible hydrogen-bonding interaction between polymers. In addition, semi-IPN type gels were prepared by chemical crosslinking of PHEA/PNVP blend solution using hexamethylene diisocyanate (HMDI) as a crosslinking reagent. The prepared gel was characterized by their swelling property and morphology.

Crystal Structures and Thermal Properties of Two Binuclear Cd(II) Supramolecular Complexes Based on Quinolinecarboxylate Ligand

  • Hao, Hu-Jun;Yin, Xian-Hong;Lin, Cui-Wu;Wei, Shui-Qiang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3255-3260
    • /
    • 2011
  • Two novel binuclear metal-organic coordination complexes $[Cd_2(L)_2(bpy)_2(H_2O)_2]{\cdot}6H_2O$ (1), $[Cd_2(L)_2(phen)_2-(H_2O)_2]{\cdot}2H_2O$ (2) (where L = 2-methylquinoline-3,4-dicarboxylate dianion, bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline) have been synthesized under hydrothermal conditions and characterized by single crystal Xray diffraction, spectral method (IR), elemental analysis and thermal gravimetric analysis (TGA). Both 1 and 2 consist of two Cd(II) atoms bridged by two monoatomic bridging carboxylate groups from two L ligands, and the second carboxylate group of each L is monodentately coordinated to Cd(II), creating a sevenmembered chelating ring. The coordination at each metal nucleus is completed by a water molecule and a chelating bidentate molecule. The 3D structures of the complexes are stabilized by ${\pi}-{\pi}$ stacking interactions and hydrogen-bonds.