• Title/Summary/Keyword: single degree of freedom (SDOF)

Search Result 116, Processing Time 0.022 seconds

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Misfire Detection by Using the Crankshaft Speed Fluctuation(1) (크랭크축 각속도의 변동을 이용한 실화 판정(1))

  • 배상수;임병진;김세웅;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.23-31
    • /
    • 1996
  • The crankshaft speed fluctuation was measured every crank angle. In order to detect the misfire, the engine and the dynamometer were considered as a single- degree of freedom system. From this modeling, the detection criteria were derived and examined by the engine test. By this method the single misfire or multiple misfires can be detected. Even on the condition of low load and higher speed than 3000rpm, where it was difficult through the other methods, misfire detection was carried out steadily. From this results, the method proposed by this paper proved reasonable.

  • PDF

Effects of Imperfect Fixing at the Active End of Spring-top Resonant Column Apparatus (주동단에 반력으프링이 부착된 공진우 시험기에서 우동단 불완전 고정의 영향)

  • 민덕기
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.7-14
    • /
    • 1990
  • The two degree of freedom model is proposed to study the effects of imperfect fixing at the active end of spring-top resonant column apparatus. A computer program using the SYMPHONY spreadsheet is developed to calculate the dimensionless frequency, F, from which modulug can be determined. It is found that the effect of reaction mass through the parameter Tr on dimensionless frequency, F, can not be ignored if Tr$\leq$20. As To increases, the variation of F increases. But for Tr$\geq$ 20, the effect of To becomes small. It is recommended that T. be greater than 20 if single degree of freedom model is rosed to determine modulus of soil. It also is found that damping ratios of specimen and apparatus do not strongly affect the dimensionless frequency, F.

  • PDF

Seismic Fragility Analysis of Single-Degree-of-Freedom Model Based on Input Earthquake Ground Motions in Strong and Low-to-Moderate Seismic Regions (강진 및 중·약진 지역의 입력 지진파에 따른 단자유도 모델의 지진취약도 분석)

  • Sangki Park;Jeong-Rae Cho;Chang-Beck Cho;Dong-Chan Kim;Jinhyuk Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.371-380
    • /
    • 2023
  • To calculate seismic fragility, it is important to select input earthquake ground motions that can properly express the characteristics of the target site. This study analyzed the seismic fragility of a single-degree-of-freedom (SDOF) model based on input earthquake ground motions in strong and low-to-moderate seismic regions. As a first step, a total of four sets of input earthquake ground motions were selected,: two sets measured near or far from overseas strong earthquake records and two sets exhibiting the characteristics of low-to-moderate earthquake regions in South Korea. A nonlinear SDOF model for three natural periods was applied to the target structure, and incremental dynamic analysis was used for fragility analysis. In addition, four damage states were defined, and seismic fragility results for each natural period of the nonlinear SDOF model for the four aforementioned input earthquake ground motion sets were obtained for each damage state.

Comparison of Energy Demand in Multi-Story Buckling Restrained Braced Frame and Equivalent SDOF System (다층 비좌굴 가새골조와 등가 단자유도계의 에너지 요구량의 비교)

  • 김진구;원영섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.173-182
    • /
    • 2003
  • In equivalent static nonlinear analysis and in energy-based design, the structures are generally transformed into an equivalent SDOF system. In this study the seismic energy demands in multi story structures, such as three-, eight-, and twenty-story steel moment-resisting frames(MRF), buckling restrained braced frames(BRBF) and a damage tolerant braced frame(DTBF), are compared with those of equivalent single degree of freedom(ESDOF) systems. Sixty earthquake ground motions recorded In different soil conditions, which are soft rock, soft soil, and neat fault, were used to compute the input and hysteretic energy demands in model structures. In case the modal mass coefficient is less than 0.8, the effects of higher modes are considered in the process of converting into ESDOF According to the analysis results, the hysteretic and input energies obtained from 3 story and 8 story MRF and DTBF agreed well with the results from analysis of equivalent SDOF systems. However in the 20 story BRBF the results from ESDOF underestimated those obtained from the original structures.

Development of seismic collapse capacity spectra for structures with deteriorating properties

  • Shu, Zhan;Li, Shuang;Gao, Mengmeng;Yuan, Zhenwei
    • Earthquakes and Structures
    • /
    • v.12 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • Evaluation on the sidesway seismic collapse capacity of the widely used low- and medium-height structures is meaningful. These structures with such type of collapse are recognized that behave as inelastic deteriorating single-degree-of-freedom (SDOF) systems. To incorporate the deteriorating effects, the hysteretic loop of the nonlinear SDOF structural model is represented by a tri-linear force-displacement relationship. The concept of collapse capacity spectra are adopted, where the incremental dynamic analysis is performed to check the collapse point and a normalized ground motion intensity measure corresponding to the collapse point is used to define the collapse capacity. With a large amount of earthquake ground motions, a systematic parameter study, i.e., the influences of various ground motion parameters (site condition, magnitude, distance to rupture, and near-fault effect) as well as various structural parameters (damping, ductility, degrading stiffness, pinching behavior, accumulated damage, unloading stiffness, and P-delta effect) on the structural collapse capacity has been performed. The analytical formulas for the collapse capacity spectra considering above influences have been presented so as to quickly predict the structural collapse capacities.

Vibration control of an SDOF structure using semi-active tuned mass damner (준능동 TMD를 이용한 단자유도 구조물의 진동제어)

  • Kim, Hyun-Su;Lee, Dong-Guen
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Damage potential of earthquake records for RC building stock

  • Ozmen, Hayri Baytan;Inel, Mehmet
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1315-1330
    • /
    • 2016
  • This study investigates ground motion parameters and their damage potential for building type structures. It focuses on low and mid-rise reinforced concrete buildings that are important portion of the existing building stock under seismic risk in many countries. Correlations of 19 parameters of 466 earthquake records with nonlinear displacement demands of 1056 Single Degree of Freedom (SDOF) systems are investigated. Properties of SDOF systems are established to represent RC building construction practice. The correlation of damage and ground motion characteristics is examined with respect to number of story and site classes. Equations for average nonlinear displacement demands of considered RC buildings are given for some of the ground motion parameters. Velocity related parameters are generally found to have better results than the acceleration, displacement and frequency related ones. Correlation of the parameters may be expected to decrease with increasing intensity of seismic event. Velocity Spectrum Intensity and Peak Ground Velocity have been found to have the highest correlation values for almost all site classes and number of story groups. Common parameter of Peak Ground Acceleration has lower correlation with damage when compared to them and some other parameters like Effective Design Acceleration and Characteristic Intensity.

A methodology to estimate earthquake induced worst failure probability of inelastic systems

  • Akbas, Bulent;Nadar, Mustafa;Shen, Jay
    • Structural Engineering and Mechanics
    • /
    • v.29 no.2
    • /
    • pp.187-201
    • /
    • 2008
  • Earthquake induced hysteretic energy demand for a structure can be used as a limiting value of a certain performance level in seismic design of structures. In cases where it is larger than the hysteretic energy dissipation capacity of the structure, failure will occur. To be able to select the limiting value of hysteretic energy for a particular earthquake hazard level, it is required to define the variation of hysteretic energy in terms of probabilistic terms. This study focuses on the probabilistic evaluation of earthquake induced worst failure probability and approximate confidence intervals for inelastic single-degree-of-freedom (SDOF) systems with a typical steel moment connection based on hysteretic energy. For this purpose, hysteretic energy demand is predicted for a set of SDOF systems subject to an ensemble of moderate and severe EQGMs, while the hysteretic energy dissipation capacity is evaluated through the previously published cyclic test data on full-scale steel beam-to-column connections. The failure probability corresponding to the worst possible case is determined based on the hysteretic energy demand and dissipation capacity. The results show that as the capacity to demand ratio increases, the failure probability decreases dramatically. If this ratio is too small, then the failure is inevitable.

Critical earthquake loads for SDOF inelastic structures considering evolution of seismic waves

  • Moustafa, Abbas;Ueno, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.147-162
    • /
    • 2010
  • The ground acceleration measured at a point on the earth's surface is composed of several waves that have different phase velocities, arrival times, amplitudes, and frequency contents. For instance, body waves contain primary and secondary waves that have high frequency content and reach the site first. Surface waves are composed of Rayleigh and Love waves that have lower phase velocity, lower frequency content and reach the site next. Some of these waves could be of more damage to the structure depending on their frequency content and associated amplitude. This paper models critical earthquake loads for single-degree-of-freedom (SDOF) inelastic structures considering evolution of the seismic waves in time and frequency. The ground acceleration is represented as combination of seismic waves with different characteristics. Each seismic wave represents the energy of the ground motion in certain frequency band and time interval. The amplitudes and phase angles of these waves are optimized to produce the highest damage in the structure subject to explicit constraints on the energy and the peak ground acceleration and implicit constraints on the frequency content and the arrival time of the seismic waves. The material nonlinearity is modeled using bilinear inelastic law. The study explores also the influence of the properties of the seismic waves on the energy demand and damage state of the structure. Numerical illustrations on modeling critical earthquake excitations for one-storey inelastic frame structures are provided.