• Title/Summary/Keyword: single curvature

Search Result 155, Processing Time 0.026 seconds

Identification of plastic deformations and parameters of nonlinear single-bay frames

  • Au, Francis T.K.;Yan, Z.H.
    • Smart Structures and Systems
    • /
    • v.22 no.3
    • /
    • pp.315-326
    • /
    • 2018
  • This paper presents a novel time-domain method for the identification of plastic rotations and stiffness parameters of single-bay frames with nonlinear plastic hinges. Each plastic hinge is modelled as a pseudo-semi-rigid connection with nonlinear hysteretic moment-curvature characteristics at an element end. Through the comparison of the identified end rotations of members that are connected together, the plastic rotation that furnishes information of the locations and plasticity degrees of plastic hinges can be identified. The force consideration of the frame members may be used to relate the stiffness parameters to the elastic rotations and the excitation. The damped-least-squares method and damped-and-weighted-least-squares method are adopted to estimate the stiffness parameters of frames. A noise-removal strategy employing a de-noising technique based on wavelet packets with a smoothing process is used to filter out the noise for the parameter estimation. The numerical examples show that the proposed method can identify the plastic rotations and the stiffness parameters using measurements with reasonable level of noise. The unknown excitation can also be estimated with acceptable accuracy. The advantages and disadvantages of both parameter estimation methods are discussed.

Brazier effect of single- and double-walled elastic tubes under pure bending

  • Sato, Motohiro;Ishiwata, Yuta
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.17-26
    • /
    • 2015
  • The cross sections of hollow cylindrical tubes ovalise under a pure bending condition, and this reduces their flexural stiffness as their curvatures increase. It is important to accurately evaluate this phenomenon, known as the 'Brazier effect', to understand the bending behaviour of the systems considered. However, if the tubes are supported by an elastic medium or foundation, the ovalisation displacements of their cross sections may decrease. From this point of view, the purpose of this research is to analytically investigate the bending characteristics of single- and double-walled elastic tubes contacted by an elastic material by considering the Brazier effect. The Brazier moment, which is the maximum moment-carrying capacity of the ovalised cross section, can be calculated by introducing the strain energy per unit length of the tube in terms of the degree of ovalisation for the tube and the curvature. The total strain energy of the double-walled system is the sum of the strain energies of the outer and inner tubes and that of the compliant core. Results are comparatively presented to show the variation in the degree of ovalisation and the Brazier moment for single- and double-walled tubes.

Characteristics of Sediment and Flow with Channel Patterns in Alluvial Rivers (충적하천(沖積河川)의 수로양상(水路樣相)에 따른 유사(流砂) 및 흐름특성(特性))

  • Lee, Jong Seok;Lee, Dae Cheol;Pai, Dong Man;Cha, Young Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1177-1189
    • /
    • 1994
  • This paper aims to develop the numerical model for prediction of the channel migration by analyzing of sediment and flow characteristics with patterns of channel in alluvial rivers. Flow in rivers constitutes to be the meandering or the braided form and rarely straight channel through morphologically stable patterns with mutual actions between the flowing water and bed materials. In order to develop the model for simulation of the channel migration, the channels are divided into two types with positive or negative sign by the direction of curvature radius of the centerline channel ($r_c$). That is, the single bend-channel consists of only one curvature of positive or negative sign and the multi-bend channel consists of two more curvatures of positive or negative sign, respectively. The model analyzes the sediment and flow characteristics under the influence of superelevation, spiral motion, irregularity in bed topography and depth-averaged velocity of channels. For reliability of this model, the single bend-channel and the multi bend channel are compared with experiment data in other models and the measured field data in the Keum-River, respectively. As a result, the both com parisians turn out to be excellent.

  • PDF

Synthesis, Characterizations, and Applications of Metal-Ions Incorporated High Quality MCM-41 Catalysts (고품질 금속 이온 첨가 MCM-41 분자체 촉매의 제법, 특성화 및 응용 반응)

  • Lim, Steven S.;Haller, Gary L.
    • Korean Chemical Engineering Research
    • /
    • v.51 no.4
    • /
    • pp.443-454
    • /
    • 2013
  • Various metal ions (transition and base metals) incorporated MCM-41 catalysts can be synthesized using colloidal and soluble silica with non-sodium involved process. Transition metal ion-typically $V^{5+}$, $Co^{2+}$, and $Ni^{2+}$-incorporated MCM-41 catalysts were synthesized by isomorphous substitution of Si ions in the framework. Each incorporated metal ion created a single species in the silica framework, single-site solid catalyst, showing a substantial stability in reduction and catalytic activity. Radius of pore curvature effect was investigated with Co-MCM-41 by temperature programmed reduction (TPR). The size of metallic Co clusters, sub-nanometer, could be controlled by a proper reduction treatment of Co-MCM-41 having different pore size and the initial pH adjustment of the Co-MCM-41 synthesis solution. These small metallic clusters showed a high stability under a harsh reaction condition without serious migration, resulting from a direct anchoring of small metallic clusters to the partially or unreduced metal ions on the surface. After a complete reduction, partial occlusion of the metallic cluster surface by amorphous silica stabilized the particles against aggregations. As a probe reaction of particle size sensitivity, carbon single wall nanotubes (SWNT) were synthesized using Co-MCM-41. A metallic cluster stability test was performed by CO methanation using Co- and Ni-MCM-41. Methanol and methane partial oxidations were carried out with V-MCM-41, and the radius of pore curvature effect on the catalytic activity was investigated.

Conformation of single polymer molecule in a slot coating flow

  • Lee, Jeong-Yong;Ryu, Bo-Kyung;Lee, Joo-Sung;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • To satisfy good mechanical and optical properties of polymer-coated film products, it will be indispensable to elucidate the molecular orientation of polymer chains within coating liquids in coating flows. Using hybridized numerical method between computational fluid dynamics (CFD) and Brownian dynamics (BD) simulations can provide the useful information for the better quality control of coated films. Flexible polymer chains, e.g., ${\lambda}$-DNA molecules here, change their conformation according to the flow strength and the flow type. The molecular conformation within the coated film on the web or substrate is quite different, because the polymer chains experience the complicated flow strength and flow types in flow field. Especially in the slot coating flow, these chains are more extended by the extension-like flow field generated in the free surface curvature just beyond the downstream die region. Also, the polymer chain extension beneath the free surface can be affected by the die geometry, e.g., the coating gap, changing flow field.

A Study on the Improvement of Technical Regulation in the Customer Cabling System Using Optical fiber for FTTH (FTTH 도입을 위한 광선로설비 기술기준 개선 연구)

  • Choi, Mun-Hwan;Cho, Pyoung-Dong;Kang, Young-Heung;Yang, Jun-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7C
    • /
    • pp.529-533
    • /
    • 2008
  • In this paper, we have analysed the channel loss characteristics of optical fiber due to the changing of radius of curvatures and the number of cable banding, and due to the connection between different modes of fiber to derive revisions of technical regulation for FTTH. The results of test show that all conditions are satisfied the criteria(allowable radius of curvatures, 30mm) with the exception of conditions of 10mm radius in single mode case and show that source of light in multi mode fiber can't be delivered to single mode fiber. henceforth, we should study more intensively on the standards of connection between cables in the different modes.

Fabrication of Micro/nanoscale Cutting Tool Geometry of Single Crystal Diamond Tool by Focused Ion Beam (집속이온빔(Focused Ion Beam)에 의한 단결정 다이아몬드 공구의 마이크로/나노스케일 절삭공구 형상 제작)

  • Baek, Seung Yub;Jang, Sung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.3
    • /
    • pp.207-213
    • /
    • 2014
  • A study was carried out to fabricate the cutting tool geometry with micro/nanoscale on the single crystal diamond tool by using the FIB. The FIB technique is an ideal tool for TEM sample preparation that allows for the fabrication of electron-transparent foils. The FIB is appropriate techniques to sample and subsequently define the chemical composition and the structural state of mineral inclusion on the micro/nanoscale. The combination of FIB with a SEM allows for 3D information to be obtained from samples including 3D imaging. Cutting strategies were demonstrated to improve the performance of cutting tool geometry and to generate high aspect ratio micro cutting tool. A finely focused beam of 30keV Ga+ ions was used to mill cutting tool shapes for various micro patterns. Therefore FIB sputtering is used to shape a variety of cutting tools with dimensions in the $1-5{\mu}m$ range and cutting edge radii of curvature of under 50nm.

On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.261-275
    • /
    • 2019
  • The main objective of this paper is to study the axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets (GSs) under in-plane loading in the theoretical framework of the nonlocal strain gradient theory. To begin with, a graphene sheet is modeled by a two-dimensional plate subjected to simply supported ends, and supposed to have a small initial curvature. Then according to the Hamilton's principle, the nonlinear governing equations are derived with the aid of the classical plate theory and the von-karman nonlinearity theory. Subsequently, for providing a more accurate physical assessment with respect to the influence of respective parameters on the mechanical performances, the approximate analytical solutions are acquired via using a two-step perturbation method. Finally, the authors perform a detailed parametric study based on the solutions, including geometric imperfection, nonlocal parameters, strain gradient parameters and wave mode numbers, and then reaching a significant conclusion that both the size-dependent effect and a geometrical imperfection can't be ignored in analyzing GSs.

Thermoelastic deformation behavior of functionally graded cylindrical panels with multiple perforations

  • Shyam K. Chaudhary;Vishesh R. Kar;Karunesh K. Shukla
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.127-140
    • /
    • 2023
  • The present article focuses on the thermoelastic deformation behavior of inhomogeneous functionally graded metal/ceramic cylindrical shell structure with multiple perforations using 2D finite element approximation. Here, cylindrical shell structure is considered with single (1×1) and multiple (2×2, 3×3 and 4×4) perforations. The temperature-dependent elastic and thermal properties of functionally graded material are evaluated using Voigt's micromechanical material scheme via power-law function. The kinematics of the proposed model is based on the equivalent single-layer first-order shear deformation mid-plane theory with five degrees-of-freedom. Here, 2D isoparametric finite element solutions are obtained using eight-node quadrilateral elements. The mesh refinement of present finite element model is performed to confirm the appropriate number of elements and nodes for the analysis purpose. Subsequently, a comparison test is conducted to demonstrate the accuracy of present results. In later section, numerous numerical illustrations are demonstrated at different set of conditions by varying structural, material and loading parameters and that confirms the significance of various parameters such as power-law index, aspect ratio, thickness ratio, curvature ratio, number of perforations and temperature on the deformation characteristics of functionally graded cylindrical shell structure.

3D surface Reconstruction of Moving Object Using Multi-Laser Stripes Irradiation (멀티 레이저 라인 조사를 이용한 비등속 이동물체의 3차원 형상 복원)

  • Yi, Young-Youl;Ye, Soo-Young;Nam, Ki-Gon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.144-152
    • /
    • 2007
  • We propose a 3D modeling method for surface inspection of non-linear moving object. The laser lines reflect the surface curvature. We can acquire 3D surface information by analyzing projected laser lines on object. ill this paper, we use multi-line laser to make use of robust of single stripe method and high speed of single frame. Binarization and channel edge extraction method were used for robust laser line extraction. A new labeling method was used for laser line labeling. We acquired sink information between each 3D reconstructed frame by feature point matching, and registered each frame to one whole image. We verified the superiority of proposed method by applying it to container damage inspection system.