• 제목/요약/키워드: single core

Search Result 1,022, Processing Time 0.034 seconds

Computationally Efficient Instance Memory Monitoring Scheme for a Security-Enhanced Cloud Platform (클라우드 보안성 강화를 위한 연산 효율적인 인스턴스 메모리 모니터링 기술)

  • Choi, Sang-Hoon;Park, Ki-Woong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.775-783
    • /
    • 2017
  • As interest in cloud computing grows, the number of users using cloud computing services is increasing. However, cloud computing technology has been steadily challenged by security concerns. Therefore, various security breaches are springing up to enhance the system security for cloud services users. In particular, research on detection of malicious VM (Virtual Machine) is actively underway through the introspecting virtual machines on the cloud platform. However, memory analysis technology is not used as a monitoring tool in the environments where multiple virtual machines are run on a single server platform due to obstructive monitoring overhead. As a remedy to the challenging issue, we proposes a computationally efficient instance memory introspection scheme to minimize the overhead that occurs in memory dump and monitor it through a partial memory monitoring based on the well-defined kernel memory map library.

Framework Implementation of Image-Based Indoor Localization System Using Parallel Distributed Computing (병렬 분산 처리를 이용한 영상 기반 실내 위치인식 시스템의 프레임워크 구현)

  • Kwon, Beom;Jeon, Donghyun;Kim, Jongyoo;Kim, Junghwan;Kim, Doyoung;Song, Hyewon;Lee, Sanghoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1490-1501
    • /
    • 2016
  • In this paper, we propose an image-based indoor localization system using parallel distributed computing. In order to reduce computation time for indoor localization, an scale invariant feature transform (SIFT) algorithm is performed in parallel by using Apache Spark. Toward this goal, we propose a novel image processing interface of Apache Spark. The experimental results show that the speed of the proposed system is about 3.6 times better than that of the conventional system.

Nano Bio Imaging for NT and BT

  • Moon, DaeWon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.51.2-51.2
    • /
    • 2015
  • Understanding interfacial phenomena has been one of the main research issues not only in semiconductors but only in life sciences. I have been trying to meet the atomic scale surface and interface analysis challenges from semiconductor industries and furthermore to extend the application scope to biomedical areas. Optical imaing has been most widely and successfully used for biomedical imaging but complementary ion beam imaging techniques based on mass spectrometry and ion scattering can provide more detailed molecular specific and nanoscale information In this presentation, I will review the 27 years history of medium energy ion scattering (MEIS) development at KRISS and DGIST for nanoanalysis. A electrostatic MEIS system constructed at KRISS after the FOM, Netherland design had been successfully applied for the gate oxide analysis and quantitative surface analysis. Recenlty, we developed time-of-flight (TOF) MEIS system, for the first time in the world. With TOF-MEIS, we reported quantitative compositional profiling with single atomic layer resolution for 0.5~3 nm CdSe/ZnS conjugated QDs and ultra shallow junctions and FINFET's of As implanted Si. With this new TOF-MEIS nano analysis technique, details of nano-structured materials could be measured quantitatively. Progresses in TOF-MEIS analysis in various nano & bio technology will be discussed. For last 10 years, I have been trying to develop multimodal nanobio imaging techniques for cardiovascular and brain tissues. Firstly, in atherosclerotic plaque imaging, using, coherent anti-stokes raman scattering (CARS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) multimodal analysis showed that increased cholesterol palmitate may contribute to the formation of a necrotic core by increasing cell death. Secondly, surface plasmon resonance imaging ellipsometry (SPRIE) was developed for cell biointerface imaging of cell adhesion, migration, and infiltration dynamics for HUVEC, CASMC, and T cells. Thirdly, we developed an ambient mass spectrometric imaging system for live cells and tissues. Preliminary results on mouse brain hippocampus and hypotahlamus will be presented. In conclusions, multimodal optical and mass spectrometric imaging privides overall structural and morphological information with complementary molecular specific information, which can be a useful methodology for biomedical studies. Future challenges in optical and mass spectrometric imaging for new biomedical applications will be discussed.

  • PDF

SUNSHINE, EARTHSHINE AND CLIMATE CHANGE: II. SOLAR ORIGINS OF VARIATIONS IN THE EARTH'S ALBEDO

  • GOODE P. R.;PALLE E.;YURCHYSHYN V.;QIU J.;HICKEY J.;RODRIGUEZ P. MONTANES;CHU M.-C.;KOLBE E.;BROWN C.T.;KOONIN S.E.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.83-91
    • /
    • 2003
  • There are terrestrial signatures of the solar activity cycle in ice core data (Ram & Stoltz 1999), but the variations in the sun's irradiance over the cycle seem too small to account for the signature (Lean 1997; Goode & Dziembowski 2003). Thus, one would expect that the signature must arise from an indirect effect(s) of solar activity. Such an indirect effect would be expected to manifest itself in the earth's reflectance. Further, the earth's climate depends directly on the albedo. Continuous observations of the earthshine have been carried out from Big Bear Solar Observatory since December 1998, with some more sporadic measurements made during the years 1994 and 1995. We have determined the annual albedos both from our observations and from simulations utilizing the Earth Radiation Budget Experiment (ERBE) scene model and various datasets for the cloud cover, as well as snow and ice cover. With these, we look for inter-annual and longer-term changes in the earth's total reflectance, or Bond albedo. We find that both our observations and simulations indicate that the albedo was significantly higher during 1994-1995 (activity minimum) than for the more recent period covering 1999-2001 (activity maximum). However, the sizes of the changes seem somewhat discrepant. Possible indirect solar influences on the earth's Bond albedo are discussed to emphasize that our earthshine data are already sufficiently precise to detect, if they occur, any meaningful changes in the earth's reflectance. Still greater precision will occur as we expand our single site observations to a global network.

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

Development of Multi-applications for Data Broadcasting (데이터방송 멀티 애플리케이션 개발)

  • Kim Hyun-Soon;Kwon Jae-Kwang;Kang Dae-Kap
    • Journal of Broadcast Engineering
    • /
    • v.11 no.1 s.30
    • /
    • pp.107-115
    • /
    • 2006
  • In the environment of single application data broadcasting, only one application can be serviced at a specific time on one channel. To overcome this, we developed the structure and the method of operation for multi-applications which are fully conformant to the ACAP (Advanced Common Application Platform), and modified data broadcasting system to support multi-applications. In multi-application environment, broadcasters can service multiple applications simultaneously at a specific airtime on one channel so users can enjoy services selectively according to their preferences. In this paper, we present an example of multi-application service which was developed to make an experiment before servicing them to users on the air. The core of the multi-application is a manager application which manages other ordinary applications, so we describe the function and structure of the manager application, and then present the experimental results to show that the proposed method is the proper model for multi-applications.

The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air

  • Kim, Ji-Ho;Yoon, Young-Bin;Park, Chul-Woung;Hahn, Jae-Won
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.386-397
    • /
    • 2012
  • The stability and structure of bluff-body stabilized hydrogen flames were investigated numerically and experimentally. The velocity of coflowing air was varied from subsonic velocity to a supersonic velocity of Mach 1.8. OH PLIF images and Schlieren images were used for analysis. Flame regimes were used to classify the characteristic flame modes according to the variation of the fuel-air velocity ratio, into jet-like flame, central-jet-dominated flame, and recirculation zone flame. Stability curves were drawn to find the blowout regimes and to show the improvement in flame stability with increasing lip thickness of the fuel tube, which acts as a bluff-body. These curves collapse to a single line when the blowout curves are normalized by the size of the bluff-body. The variation of flame length with the increase in air flow rate was also investigated. In the subsonic coflow condition, the flame length decreased significantly, but in the supersonic coflow condition, the flame length increased slowly and finally reached a near-constant value. This phenomenon is attributed to the air-entrainment of subsonic flow and the compressibility effect of supersonic flow. The closed-tip recirculation zone flames in supersonic coflow had a reacting core in the partially premixed zone, where the fuel jet lost its momentum due to the high-pressure zone and followed the recirculation zone; this behavior resulted in the long characteristic time for the fuel-air mixing.

Copper, Zinc-Superoxide Dismutase (Cu/Zn SOD) Gene During Embryogenesis of Bombyx mori: Molecular Cloning, Characterization and Expression

  • Hong, Sun-Mee;Kang, Seok-Woo;Goo, Tae-Won;Kim, Nam-Soon;Lee, Jin-Sung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.23-30
    • /
    • 2006
  • BmCu/Zn SOD was isolated from early embryo of Bombyx mori using microarray analysis. The BmCu/Zn SOD gene was observed during the early embryonic stage with the strongest signal found at the unfertilizaion, fertilization and blastoderm stages. The BmCu/Zn SOD gene encodes a protein of 154 amino acids with a calculated Mr of 15 kDa. The deduced amino acid sequence of BmCu/Zn SOD indicated that the residues that form on the Cu/Zn binding site are conserved and that the sequence is a 60% identity to that of M. domestica. In a phylogenetic tree, Bm SOD was also close to Drosophila SODs rather than other insect SODs. The BmCu/Zn SOD gene exists as a single copy in the genome. Transcripts of BmCu/Zn SOD cDNA were identified by northern blot analysis. The expression of the BmCu/Zn SOD gene was observed weakly in most of larvae, pre-pupae, pupae and adult tissues. Also, the BmCu/Zn SOD gene was observed in early embryonic stage. Although the roles of SODs remains to be further elucidated, the high expression of BmCu/Zn SOD gene at before 24 h post fertilization suggests that this gene is of general importance during early embryogenesis in the Bombyx mod.

A Study of Material Removal Characteristics by Friction Monitoring System of Sapphire Wafer in Single Side DMP (사파이어 웨이퍼 DMP에서 마찰력 모니터링을 통한 재료 제거 특성에 관한 연구)

  • Jo, Wonseok;Lee, Sangjik;Kim, Hyoungjae;Lee, Taekyung;Lee, Seongbeom
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Sapphire has a high hardness and strength and chemical stability as a superior material. It is used mainly as a material for a semiconductor as well as LED. Recently, the cover glass industry used by a sapphire is getting a lot of attention. The sapphire substrate is manufactured through ingot sawing, lapping, diamond mechanical polishing (DMP) and chemical mechanical polishing (CMP) process. DMP is an important process to ensure the surface quality of several nm for CMP process as well as to determine the final form accuracy of the substrate. In DMP process, the material removal is achieved by using the mechanical energy of the relative motion to each other in the state that the diamond slurry is disposed between the sapphire substrate and the polishing platen. The polishing platen is one of the most important factors that determine the material removal characteristics in DMP. Especially, it is known that the geometric characteristics of the polishing platen affects the material removal amount and its distribution. This paper investigated the material removal characteristics and the effects of the polishing platen groove in sapphire DMP. The experiments were preliminarily carried out to evaluate the sapphire material removal characteristics according to process parameters such as pressure, relative velocity and so on. In the experiment, the monitoring apparatus was applied to analyze process phenomena in accordance with the processing conditions. From the experimental results, the correlation was analyzed among process parameters, polishing phenomena and the material removal characteristics. The material removal equation based on phenomenological factors could be derived. And the experiment was followed to investigate the effects of platen groove on material removal characteristics.

A STUDY ON THE FRACTURE OF DENTAL AMALGAM (치과용 아말감의 파절에 관한 연구)

  • Huh, Hyeon-Do;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1983
  • It was the purpose of this study to investigate the fracture mode of dental amalgam by observing the crack propagation, and to relate this to the microstructure of the amalgam. Caulk 20th Century Regular, Caulk Spherical, Dispersalloy, and Tytin amalgam alloys were used for this study. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (Capmaster, S.S. White), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12 mm in height and was pressed by the Instron Universal Testing Machine at the speed of 1mm/min with 120Kg. The specimen removed from the mold was stored in the room temperature for a week. This specimen was polished with the emery papers from #100 to #200 and finally on the polishing cloth with 0.06${\mu}Al_2O_3$ powder suspended in water. The specimen was placed on the Instron testing machine in the method similar to the diametral tensile test and loaded at the crosshead speed of 0.05mm/min. The load was stopped short of fracture. The cracks on the polished surface of specimen was examined with scanning electron microscope (JSM-35) and analyzed by EPMA (Electron probe microanalyzer). The following results were obtained. 1. In low copper lathe-cut amalgam, the crack went through the voids and ${\gamma}_2$ phase, through the ${\gamma}_1$ phase around the ${\gamma}$ particles. 2. In low copper spherical amalgam, it was observed that the crack passed through the ${\gamma}_2$ and ${\gamma}_1$ phase, and through the boundary between the ${\gamma}_1$ and ${\gamma}$ phase. 3. In high copper dispersant (Dispersalloy) amalgam, the crack was found to propagate at the interface between the ${\gamma}_1$ matrix and reaction ring around the dispersant (Ag-Cu) particles, and to pass through the Ag-Sn particles. 4. In high copper single composition (Tytin) amalgam, the crack went through the ${\gamma}_1$ matrix between ${\eta}$ crystals, and through the unreacted alloy particle (core).

  • PDF