• Title/Summary/Keyword: single cell

Search Result 3,808, Processing Time 0.036 seconds

Single beam acoustic tweezers for biomedical applications (단일 빔 음향 집게를 이용한 바이오메디컬 응용 연구)

  • Hae Gyun Lim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.452-459
    • /
    • 2023
  • Acoustic tweezers represent an exceptionally versatile and adaptable collection of instruments that harness the intrinsic power of sound waves to manipulate a wide spectrum of bioparticles, ranging from minuscule extracellular vesicles at the nanoscale to more substantial multicellular organisms measuring in millimeters. This field of research has witnessed remarkable progress over the course of the past few decades, primarily in the domain of Single Beam Acoustic Tweezers (SBAT) which utilizes a single element transducer for its operation. Initially conceived as a method for particle trapping, SBAT has since evolved into an advanced platform capable of achieving precise translation of cells and organisms. Recent groundbreaking advancements have significantly enhanced the capabilities of SBAT, unlocking new functionalities such as particle/cell separation and controlled deformation of single cells. These advancements have propelled SBAT to the forefront of bioparticle/cell manipulation, gathering attention within the scientific community. This review explores the core principles of SBAT and how sound waves affect bioparticles/cells. We aim to build a strong conceptual foundation for understanding advancements in this field by detailing its principles and methodologies.

Nafion Ionomer Content in Catalyst Layer for PEMFC Nafion Ionomer Content in Catalyst Layer for PEMFC (고분자 전해질 막 연료전지의 촉매층 내의 나피온 아이오노머양에 따른 단위 셀의 전기화학적 특성 연구)

  • Ahn, Kyung-Yong;Yang, Cheol-Nam;Lee, Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.540-546
    • /
    • 2010
  • In order to confirm the effect of Nafion ionomer content in catalyst layer on the performance of PEMFC, we have fabricated several electrodes which were prepared by varying the quantity of Nafion ionomer from 24 wt.% to 39 wt.% in catalyst layer. The effect of Nafion ionomer of each electrode was evaluated with cyclic voltammetry measurement. In addition, cell performance was obtained through single cell test using hydrogen and air. The Pt utilization and performance of single cell were changed by addition of Nafion ionomer to the electrode. Single cell fabricated with 33 wt.% of Nafion ionomer in catalyst layer showed the maximum Pt utilization and performance.

In Situ Single Cell Monitoring by Isocyanide-Functionalized Ag and Au Nanoprobe-Based Raman Spectroscopy

  • Lee, So-Yeong;Jang, Soo-Hwa;Cho, Myung-Haing;Kim, Young-Min;Cho, Keun-Chang;Ryu, Pan Dong;Gong, Myoung-Seon;Joo, Sang-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.9
    • /
    • pp.904-910
    • /
    • 2009
  • The development of effective cellular imaging requires a specific labeling method for targeting, tracking, and monitoring cellular/molecular events in the living organism. For this purpose, we studied the cellular uptake of isocyanide-functionalized silver and gold nanoparticles by surface-enhanced Raman scattering (SERS). Inside a single mammalian cell, we could monitor the intracellular behavior of such nanoparticles by measuring the SERS spectra. The NC stretching band appeared clearly at ${\sim}2,100cm^{-1}$ in the well-isolated spectral region from many organic constituents between 300 and 1,700 or 2,800 and $3,600cm^{-1}$. The SERS marker band at ${\sim}2,100cm^{-1}$ could be used to judge the location of the isocyanide-functionalized nanoparticles inside the cell without much spectral interference from other cellular constituents. Our results demonstrate that isocyanide-modified silver or gold nanoparticle-based SERS may have high potential for monitoring and imaging the biological processes at the single cell level.

Affinity chromatography and capillary electrophoresis for analysis of the yeast ribosomal proteins

  • Goyder, Miriam S.;Willison, Keith R.;Klug, David R.;DeMello, Andrew J.;Ces, Oscar
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.233-238
    • /
    • 2012
  • We present a top down separation platform for yeast ribosomal proteins using affinity chromatography and capillary electrophoresis which is designed to allow deposition of proteins onto a substrate. FLAG tagged ribosomes were affinity purified, and rRNA acid precipitation was performed on the ribosomes followed by capillary electrophoresis to separate the ribosomal proteins. Over 26 peaks were detected with excellent reproducibility (<0.5% RSD migration time). This is the first reported separation of eukaryotic ribosomal proteins using capillary electrophoresis. The two stages in this workflow, affinity chromatography and capillary electrophoresis, share the advantages that they are fast, flexible and have small sample requirements in comparison to more commonly used techniques. This method is a remarkably quick route from cell to separation that has the potential to be coupled to high throughput readout platforms for studies of the ribosomal proteome.

A Study on the Manufacturing of a High-Efficiency Load Cell Using a Single Surface Design (단일면으로 디자인한 고성능 로드셀 제작에 관한 연구)

  • Lee, Jung-Hyun;Lee, Woo-Ram
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.724-730
    • /
    • 2010
  • A load cell is a converter that generates voltage signals when a certain force is effected in a given direction. An essential measurement device for electronic scales that indicate weight by numbers. These load cells are being applied in various areas such as daily life, distribution, laboratory and industrial. Recently the study to manufacture load cells in a more simple method while increasing performance is being persisted. In this study based on the comparison of load cells manufactured through single surface processing using strain gauges. Those manufactured through dual surface processing using strain gauges. Ultimately persist a more simple method of load cell manufacturing while increasing its performance. The elements that were compared were linearity, hysteresis, creep and eccentricity which are short tenn performance factors. The conclusion was that single surface processing showed almost identical data as that of dual surface processing, and the load cell error rate(0.005%) also excess regulation. The manufacturing time was shortened while mass-production was possible. Which indicates a development in the weighing industry.

A Study on Chromosomal Mosaicism Detected through Cytogenetic Analysis

  • Hwang, Si-Mok;Kwon, Kyoung-Hun;Yoon, Kyung-Ah
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.129-134
    • /
    • 2011
  • Mosaicism is the presence of two or more chromosomally distinct cell lines, each seen in two or more cells. Chromosomal mosaicism presents one of the most difficult problems in prenatal cytogenetic diagnosis, requiring the differentiation of true mosaicism from pseudomosaicism. To overcome associated problems we investigated 24 cases (amniotic fluid 13 cases, abortus tissue 3 cases, peripheral blood 8 cases) in which mosaicism has been found in cytogenetic analysis. 5 cases (38.5%) of 13 amniotic fluid cells in which mosaicisms showed single cell pseudomosaicism. Chromosomal true mosaicism is found in about 0.28% (8/2,826) of amniotic fluid cell cultures. The 24 cases involved 12 cases (50%) with sex chromosomal abnormalities, 7 cases (29.2%) with autosomal structural defects, 3 cases (12.5%) with autosomal abnormalities, 2 cases (8.3%) with a supernumerary marker. Mosaicism detected in amniotic fluid may represent the true mosaicism or may pseudomosaicism. If the same chromosome abnormality is seen in more than one cell and in two different cultures, it is considered a true mosaicism, whereas single-cell abnormalities from a single culture are regarded as pseudomosaicism. In this study, we describe a mosaicism in chromosome analysis, its diagnostic problems and clinical significance.

Alcohol Productivity Using Starchy Raw Material in Pilot Scale Multi-stage CSTR (Pilot Scale Multi-stage CSTR에서 전분질 원료를 이용한 알콜 생산)

  • Nam, Ki-Du;Lee, In-Ki;Cho, Hoon-Ho;Kim, Woon-Sik;Suh, Kuen-Hack;Ryu, Beung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.80-84
    • /
    • 1994
  • In order to induce the rapid alcohol fermentation through the increases of the cell density in a continuous alcohol fermentation of naked barley, the single-cultivation with S. cerevisiae IS-019(SCM, ordinary control), mixed-cultivation with Saccharomyces uvarum IS-026 having a flocculent ability and S. cerevisiae IS-019(MCM), and mash recirculation by single-cultivation of S. cerevisiae IS-019(MRM) modes were investigated. The cell mass in the mixed-cultivation mode was about 10% higher than that of ordinary control but the final alcohol yield was slightlyl decreased. When recycled the mash with the flow rate of 7 l/h from V$_{6}$ to V$_{5}$ fermentors under the ordinary control, the cell density was distributed at 140~170$\times $10$^{6}$ cell/ml depending upon the fermentorsorders, higher about 20% than that of the ordinary control. Under these conditions the alcohol productivity of the maximum and the overall was 12.16 g/l$\cdot $h with an alcohol of 7.6% at the V$_{5}$ fermentor and 1.19 g/l$\cdot $h with an alcohol of 8.94%, respectively. For higher cell mass it was more effective to apply the mash recirculation mode with the single-cultivation of S. cerevisiae IS-019 in a pilot scale multi-stage CSTR.

  • PDF

Electrode fabrication and Performance of Single Cell with an area of $2000\;cm^2$ in PAFC ($2000\;cm^2$ 대면적 인산형 연료전지 전극 제조 및 단위전지 성능 특성)

  • Song, Rak-Hyun;Shin, Dong-Ryul;Kim, Chang-Soo;Lee, Byung-Rok;Choi, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1308-1310
    • /
    • 1997
  • Several methods for electrode fabrication of phosphoric acid fuel cell(PAFC) have been studied. The conventional methods that include a coating method and a rolling method, have disadvantages of a very complicated drying process and a hot pressing process for making a large electrode. In this study, to solve these problems, the mixing method of coating and rolling processes has been developed. In the mixing method, the electrode was coated on the electrode support and, after drying the coated layer, was rolled at room temperature and then sintered at $350^{\circ}C$. The single cell performances of the electrodes fabricated by several methods were examined and the mixing method appeared a good cell performance of 0.65 V, $260\;mA/cm^2$. Also the single cell with an area of $2000\;cm^2$ was manufactured and its performance attained 0.593 V, 300 A.

  • PDF

Levels of Viral Glycoprotein Provide a Measure of Modulated Chemotherapeutic Effect

  • Shin, Jaeyong;Yoon, Yeon-Sook;Pyo, Suhkneung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.216-220
    • /
    • 1999
  • A chemosensitivity assay with small replicate Mm5mt/cl C3H mammary tumor cell cultures was developed to determine whether changes in viral antigen expression and release into culture fluids could be utilized as an in vitro measure of modulating drug effect. The 52,000 MW viral envelope glycoprotein (gp52) of the mouse mammary tumor virus (MMTV) was measured in culture fluids of control and drug-treated cultures while cell density was simultaneously determined by cell staining and OD 664 nm determination. While extra-cellular gp52 levels and cell density progressively increased over 72 hours for control cultures, declines in both parameters provided dual measures of effect for combination [N(phophonacetyl-L-aspartic acid)+5-fluorouracil], combination 〔N(phophonacetyl-L-aspartic acid )+5-fluoro-5'-deoxyuridine〕and single component treatment of this combination. At each treated time point, thesecombinations begin to produce a greater decline in both cell density and gp52 levels as compared to single drug treatments. These results indicate that N(phopho-nacetyl-L-aspartic acid) in combination can enhance the effectiveness of single drug.

  • PDF

Simple Method for a Cell Count of the Colonial Cyanobacterium, Microcystis sp.

  • Joung, Seung-Hyun;Kim, Choong-Jae;Ahn, Chi-Yong;Jang, Kam-Yong;Boo, Sung-Min;Oh, Hee-Mock
    • Journal of Microbiology
    • /
    • v.44 no.5
    • /
    • pp.562-565
    • /
    • 2006
  • The cell counting of colonial Microcystis spp. is a rather difficult and error-prone proposition, as this genus forms irregularly-shaped and irregularly-sized colonies, which are packed with cells. Thus, in order to facilitate a cell count, four methods of dividing the colonies into single cells were compared, including vortexing, sonication, $TiO_2$ treatment, and boiling. As a result, the boiling method was determined to generate the greatest number of single cells from a colony, and all colonies were found to have divided completely after only 6 min of treatment. Furthermore, no significant cell destruction, which might alter the actual cell density, was detected in conjunction with the boiling method (P=0.158). In order to compute the cell number more simply, the relationship between the colony size and the cell number was determined, via the boiling method. The colony volume, rather than the area or diameter was correlated more closely with the cell number ($r^2=0.727$), thereby suggesting that the cell numbers of colonial Microcystis sp. can also be estimated effectively from their volumes.