• 제목/요약/키워드: simultaneous localization and map-building

검색결과 27건 처리시간 0.024초

2차원 레이저 거리계를 이용한 수직/수평 다각평면 기반의 위치인식 및 3차원 지도제작 (3D Simultaneous Localization and Map Building (SLAM) using a 2D Laser Range Finder based on Vertical/Horizontal Planar Polygons)

  • 이승은;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제20권11호
    • /
    • pp.1153-1163
    • /
    • 2014
  • An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.

모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발 (Development of Map Building Algorithm for Mobile Robot by Using RFID)

  • 김시습;선정안;기창두
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

Compressed Extended Kalman 필터를 이용한 야외 환경에서 주행 로봇의 위치 추정 및 지도 작성 (Simultaneous Localization & Map-building of Mobile Robot in the Outdoor Environments by Vision-based Compressed Extended Kalman Filter)

  • 윤석준;최현도;박성기;김수현;곽윤근
    • 제어로봇시스템학회논문지
    • /
    • 제12권6호
    • /
    • pp.585-593
    • /
    • 2006
  • In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm. SLAM problem asks the location of mobile robot in the unknown environments. Therefore, this problem is one of the most important processes of mobile robots in the outdoor operation. To solve this problem, Extended Kalman filter (EKF) is widely used. However, this filter requires computational power (${\sim}O(N)$, N is the dimension of state vector). To reduce the computational complexity, we applied compressed extended Kalman filter (CEKF) to stereo image sequence. Moreover, because the mobile robots operate in the outdoor environments, we should estimate full d.o.f.s of mobile robot. To evaluate proposed SLAM algorithm, we performed the outdoor experiments. The experiment was performed by using new wheeled type mobile robot, Robhaz-6W. The performance results of CEKF SLAM are presented.

레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발 (The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle)

  • 이정엽;이상훈;김정하;한창수
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성 (Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots)

  • 권대현;김병국
    • 제어로봇시스템학회논문지
    • /
    • 제22권9호
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

다중 센서 시스템을 이용한 로봇 위치 인식 제어 방법 (A localization method using sensor fusion system)

  • 임재균;유종진;현웅근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1767-1768
    • /
    • 2007
  • This paper represents a map building system of Embedded Linux mobile robot. We propose a localization method which uses multiple sensors such as indoor GPS and encoder sensor for simultaneous map building system. In this paper we proposed a multiple sensor system for SLAM. For this, we developed a sensor based navigation algorithm and grid based map building algorithm under the Embedded Linux O.S. We proved this system's validity through field test

  • PDF

초음파 센서 모듈을 활용한 2D 실내 지도 작성 기법 (2D Indoor Map Building Scheme Using Ultrasonic Module)

  • 안덕현;김남문;박지혜;김영억
    • 한국통신학회논문지
    • /
    • 제41권8호
    • /
    • pp.986-994
    • /
    • 2016
  • 본 논문에서는 초음파 센서를 활용한 2D 실내 지도 작성을 위하여 회전형 모듈과 고정형 모듈을 개발하여 각 모듈의 가능성과 한계점을 확인하였으며, 초음파 센서를 활용하여 실내 지도 작성 시에 고려하여야 할 센서 특성 실험과 2D 실내 지도 작성 결과를 기술한다. 최근 실내 공간에서의 simultaneous localization and mapping(SLAM) 기술이 많은 주목을 받으면서 이와 더불어 실내 공간을 인식하여 지도정보로 만들기 위한 기술연구 또한 활발히 진행되고 있고, 이를 위한 기술로써 LiDAR, 초음파, 카메라 등이 많이 사용 되고 있다. 가장 좋은 성능을 지닌 LiDAR 기술의 경우 초음파에 비해 높은 해상력과 넓은 탐지범위를 가지고 있지만 모듈 크기의 한계, 높은 비용, 많은 연산량 그리고 비교적 다양한 매질에 따른 노이즈에 약한 특성이 있다. 이에 따라 본 논문에서는 초음파 센서를 활용하여, 레이저 센서의 취약점을 보완함과 동시에 비교적 적은 연산량을 가지며 최소한의 초음파 센서를 사용한 2D 실내 지도 작성 기법을 제안하며 실험을 통하여 이를 검증하였다.

Map Building and Localization Based on Wave Algorithm and Kalman Filter

  • Saitov, Dilshat;Choi, Jeong Won;Park, Ju Hyun;Lee, Suk Gyu
    • 대한임베디드공학회논문지
    • /
    • 제3권2호
    • /
    • pp.102-108
    • /
    • 2008
  • This paper describes a mapping and localization based on wave algorithm[11] and Kalman filter for effective SLAM. Each robot in a multi robot system has its own task such as building a map for its local position. By combining their data into a shared map, the robot scans actively seek to verify their relative locations. For simultaneous localization the algorithm which is well known as Kalman Filter (KF) is used. For modelling the robot position we wish to know three parameters (x, y coordinates and its orientation) which can be combined into a vector called a state variable vector. The Kalman Filter is a smart way to integrate measurement data into an estimate by recognizing that measurements are noisy and that sometimes they should ignored or have only a small effect on the state estimate. In addition to an estimate of the state variable vector, the algorithm provides an estimate of the state variable vector uncertainty i.e. how confident the estimate is, given the value for the amount of error in it.

  • PDF

Visual SLAM의 건설현장 실내 측위 활용성 분석 (Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site)

  • 김태진;박지원;이병민;배강민;윤세빈;김태훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • 제16권4호
    • /
    • pp.455-465
    • /
    • 2008
  • 증강현실은 지리정보의 가시화 특히 현장에서의 직접적인 가시화에 있어 매우 높은 잠재력이 있다. 하지만 현재까지의 대부분의 이동형 증강현실 시스템은 사용자의 정확한 위치를 파악하기 위해 GPS 또는 범용적으로 쓰이는 마커를 현장에 붙이는 등의 방식을 사용되었다. 물론 최근의 연구에서 마커없는 환경을 지향하고 있으나 대부분 연구실 또는 제어 환경으로 사용이 제한되어 있다. 특히 실내의 경우 GPS를 사용할 수 없기 때문에 새로운 위치파악기술이 더욱 절실하다. 최근 활발히 활용되고 있는 무선(RF)기반의 실내 위치확인 및 내비게이션 기술 역시 대량의 센서와 인식기를 설치한다는 점에서 그 실용성이 의문이다. 본 연구에서는 단일카메라기반의 SLAM 알고리듬을 이용하여 특수한 하드웨어 없이 카메라만으로 실내 위치 확인 및 내비게이션이 가능한 알고리듬을 제시하였으며, 동시에 확인된 위치에서 증강현실을 통한 정보의 가시화가 가능하도록 구현 하였다. 향후 본 연구가 목표하고 있는 실내외 seamless 연동형 u-GIS 시스템의 기본 기능으로 활용 될 것이다.

  • PDF