• Title/Summary/Keyword: simulator testbed

Search Result 25, Processing Time 0.026 seconds

Implementation of Testbed System for proving IMT-2000 Switching Technology (IMT-2000 교환기능 검증을 위한 테스트베드 구축)

  • 이현진;조기성
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.453-456
    • /
    • 2000
  • This paper describes IMT-2000 Testbed System which consists of ATM based IMT-2000 exchange(A-lMX), RNC simulator, HLR simulator, SCP simulator, B-ISDN subscriber simulator and MS simulator. Simulators were developed to verify the mobile functions and basic services of IMT-2000 like Videophone, VoD(Video on Demand), and Internet access. UPT(Universal Personal Telecommunication) service could be adapted well to this testbed system. Until the entire network elements are developed fully, this testbed system can be used to prove new services in IMT-2000 network.

  • PDF

Design and Implementation of a Testbed for the Development of KSLV-II Onboard Equipment Simulator (한국형발사체 탑재장비 시뮬레이터 개발을 위한 테스트베드 설계 및 구축)

  • Yoon, Won-Ju
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • This paper describes a testbed that was designed and implemented for the development of KSLV-II onboard equipment simulator. It used the CPCI-based industrial hardware system for scalability and the QNX real-time operating system for reliability and real-time simulation. In addition, a real-time application under QNX for function simulations of the KSLV-I PDU was developed and it was verified through interface experiments with KSLV-I upper-stage test equipment. The implemented simulator testbed will be used to verify the development feasibility in the design and development phase of a real KSLV-II onboard equipment simulator.

The Testbed System for Crisis Management System of the Power Grid Using Satellite Communication Network (위성망을 이용한 파워 그리드 위기관리 시스템의 테스트베드 구현)

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2011
  • In this paper, we propose a testbed system for the crisis management system of the power grid(CMS-PG) using satellite communication network. For the verification of CMS-PG, the proposed system composed of the simulator of satellite communication network and the simulator of phase measurement unit. Proposed satellite communication simulator can evaluate the delay and the robustness of the communication according to the rainfall and the humidity of local site. And the proposed simulator can calculates the voltage stability by hardware implementation using FPGA. Using the proposed testbed system, we adapted its function of crisis management system for the conventional power grid.

An experimental study on attitude control of spacecraft using roaction wheel (반작용 휠을 이용한 인공위성 지상 자세제어 실험 연구)

  • 한정엽;박영웅;황보한
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1334-1337
    • /
    • 1997
  • A spacecraft attitude control ground hardware simulator development is discussed in the paper. The simulator is called KT/KARI HILSSAT(Hardware-In-the Loop Simulator Single Axis Testbed), and the main structure consists of a single axis bearing and a satellite main body model on the bearing. The single axis tabel as ans experimental hardware simulator that evaluates performance and applicability of a satellite before evolving and/or confirming a mew or and old control logic used in the KOREASAT is developed. Attitude control of spaceraft by using reaction wheel is performed.

  • PDF

Design Construction of Test Bed for WSN and Effective Integral Test Simulation Settings (WSN을 위한 테스트베드와 가상환경의 효율적인 통합 테스트 시뮬레이션 환경 구축)

  • Park, Kyung-Joon;Choi, Dae-Dam;Seo, Min-Seok;Park, Hyun-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.3
    • /
    • pp.584-596
    • /
    • 2013
  • WSN (Wireless Sensor Network), to take advantage of the range was gradually expanded. So WSN access from public network to the desire to be increased. As a result, the test network environment for research has been progressing steadily. Because it requires a lot of sensor nodes, to establish of Testbed for WSN is difficult. in this paper suggests efficient integration test simulation environment of Testbed and Virtual environment for WSN. In addition to this paper suggests simulation environment able to integration of simulation time of Testbed and NS-3.

Development of a Preliminary Formation-Flying Testbed for Satellite Relative Navigation and Control

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.26.3-26.3
    • /
    • 2008
  • This research develops a GPS-based formation-flying testbed (FFTB) for formation navigation and control. The FFTB is a simulator in which spacecraft simulation and modeling software and loop test capabilities are integrated for test and evaluation of spacecraft navigation and formation control technologies. The FFTB is composed of a GPS measurement simulation computer, flight computer, environmental computer for providing true environment data and 3D visualization computer. The testbed can be simulated with one to two spacecraft, thus enabling a variety of navigation and control algorithms to be evaluated. In a formation flying simulation, GPS measurement are generated by a GPS measurement simulator to produce pseudorange, carrier phase measurements, which are collected and exchanged by the flight processors and subsequently processed in a navigation filter to generate relative and/or absolute state estimates. These state estimates are the fed into control algorithm, which are used to generate maneuvers required to maintain the formation. In this manner, the flight processor also serves as a test platform for candidate formation control algorithm. Such maneuvers are fed back through the controller and applied to the modeled truth trajectories to close simulation loop. Currently, The FFTB has a closed-loop capability of simulating a satellite navigation solution using software based GPS measurement, we move forward to improve using SPIRENT GPS RF signal simulator and space-based GPS receiver

  • PDF

Development of a Hardware-In-Loop (HIL) Simulator for Spacecraft Attitude Control Using Momentum Wheels

  • Kim, Do-Hee;Park, Sang-Young;Kim, Jong-Woo;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.347-360
    • /
    • 2008
  • In this paper, a Hardware-In-the-Loop simulator to simulate attitude control of space craft using momentum wheels is developed. The simulator consists of a spherical air bearing system allowing rotation and tilt in all three axes, three momentum wheels for actuation, and an AHRS (Attitude Heading Reference System). The simulator processes various types of data in PC104 and wirelessly communicates with a host PC using TCP/IP protocol. A simple low-cost momentum wheel assembly set and its drive electronics are also developed. Several experiments are performed to test the performance of the momentum wheels. For the control performance test of the simulator, a PID controller is implemented. The results of experimental demonstrations confirm the feasibility and validity of the Hardware-In-the-Loop simulator developed in the current study.

A Preliminary Development of Real-Time Hardware-in-the-Loop Simulation Testbed for the Satellite Formation Flying Navigation and Orbit Control (편대비행위성의 항법 및 궤도제어를 위한 실시간 Hardware-In-the-Loop 시뮬레이션 테스트베드 초기 설계)

  • Park, Jae-Ik;Park, Han-Earl;Shim, Sun-Hwa;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.99-110
    • /
    • 2009
  • The main purpose of the current research is to developments a real-time Hardware In-the-Loop (HIL) simulation testbed for the satellite formation flying navigation and orbit control. The HIL simulation testbed is integrated for demonstrations and evaluations of navigation and orbit control algorithms. The HIL simulation testbed is composed of Environment computer, GPS simulator, Flight computer and Visualization computer system. GPS measurements are generated by a SPIRENT GSS6560 multi-channel RF simulator to produce pseudorange, carrier phase measurements. The measurement date are transferred to Satrec Intiative space borne GPS receiver and exchanged by the flight computer system and subsequently processed in a navigation filter to generate relative or absolute state estimates. These results are fed into control algorithm to generate orbit controls required to maintain the formation. These maneuvers are informed to environment computer system to build a close simulation loop. In this paper, the overall design of the HIL simulation testbed for the satellite formation flying navigation and control is presented. Each component of the testbed is then described. Finally, a LEO formation navigation and control simulation is demonstrated by using virtual scenario.

Educational hardware and simulator development of Multifunction Array Radar

  • Lee, Jong-Hyun;Kim, Tae-Jun;Chun, Joo-Hwan;Park, Jin-Kyu;Kim, Yong-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1797-1801
    • /
    • 2004
  • In this paper we show the hardware testbed and software simulator of multi function array radar (MFAR). The hardware MFAR is simple and flexible hardware to implement various radar beamforming and detecting algorithms. To overcome the limitation of hardware MFAR, the software simulator is proposed. User can simulate radar under the various environment conditions adjusting the parameter of simulator. User can set environment of radar, such as the location and velocity of target, jammer and the terrain clutter. The radar use various probing pulses and supports two operation mode, surveillance and tracking mode.

  • PDF

Power Hardware-in-the-Loop (PHIL) Simulation Testbed for Testing Electrical Interactions Between Power Converter and Fault Conditions of DC Microgrid (컨버터와 DC 마이크로그리드 사고 상황의 상호작용을 검증하기 위한 실시간 전력 시뮬레이션 테스트 베드)

  • Heo, Kyung-Wook;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.150-157
    • /
    • 2021
  • Nowadays, a DC microgrid that can link various distributed power sources is gaining much attention. Accordingly, research on fault situations, such as line-to-line and line-to-ground faults of the DC microgrid, has been conducted to improve grid reliability. However, the blackout of an AC system and the oscillation of a DC bus voltage have not been reported or have not been sufficiently verified by previous research. In this study, a 20 kW DC microgrid testbed using a power HIL simulation technique is proposed. This testbed can simulate various fault conditions without any additional grid facilities and dangerous experiments. It includes the blackout of the DC microgrid caused by the AC utility grid's blackout, a drastic load increment, and the DC bus voltage oscillation caused by the LCL filter of the voltage source converter. The effectiveness of the proposed testbed is verified by using Opal-RT's OP5707 real-time simulator with a 3 kW prototype three-port dual-active-bridge converter.