• Title/Summary/Keyword: simulation of dam operation

Search Result 70, Processing Time 0.022 seconds

Prediction of Reservoir Sedimentation Patterns Using a Two-Dimensional Transport Model (2차원 유사운송모형을 이용한 저수지 퇴적분포유형의 추정)

  • 이봉훈;박창헌;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 1993
  • The sedimentation patterns at a reservoir, important to the reservoir capacity curve were simulated using a depth averaged, two-dimensional sediment transport model, that is capable of depicting velocity distributions and sediment transportation. The Banweol reservoir, whose stage capacity relationships have been surveyed before and after the construction, was selected and the daily inflow rates and stages were simulated using a reservoir operation model(DI-ROM). The applicability of the transport model was tested from the comparisons of simulated sedimentation patterns to the surveyed results. The simulated inflow rates and water level fluctuations at the reservoir during twenty-one years from 1966 to 1986, showed that water levels exceeding 80 percent of the total capacity occurred for 70 percent of the periods and inflow rates less than 5000rn$^3$/day sustained for 54 percent of the spans. Dorminant flow directions were simulated from two streamflow inlets to the dam site. And simulated sediment concentrations were higher near the inlets and lower at the inside of the reservoir. Sediment was deposited heavily near the inlets, and portions of sediments were distributed along the flow paths within the reservoir. The comparisons between the simulation results and the surveyed depositions were partially matched. However, it was not possible to compare two results at the upper parts of the reservoir where dredging was carried out few times for the purpose of reservoir maintenance. This study demonstrates that sedimentation patterns within the reservoir are closely related to incoming sediment and flow rates, water level fluctuations, and flow circulation within the reservoir.

  • PDF

Finite Element A nalysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel:I.Theory and Stability Analysis (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 :I.이론 및 수치안정성 해석)

  • Han, Kun-Yeun;Park, Jae-Hong;Lee, Jong-Tae
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.167-178
    • /
    • 1996
  • The simulation techniques of hydrologic data series have been developed for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etx. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in western USA since the early of 1980's. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and first order autoregressive model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).

  • PDF

Effective Use of Water Resources Through Conjunctive Use - (II) Application (지표수-지하수를 연계한 수자원의 효율적 이용 - (II) 적용)

  • Kim, Su-Min;Lee, Sang-Il;Kim, Byeong-Chan
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.10
    • /
    • pp.799-812
    • /
    • 2004
  • Conjunctive use of surface and ground water has drawn much attention as a promising means to solve water shortage problems. Characterized by its maximum utilization of regional resources and environmental friendliness, conjunctive use is expected to contribute to the integrated water resources management in the coming era. This paper examines the applicability of the methodology for conjunctive use developed in the companion paper (this issue). The method consists of the entire process of conjunctive use, including site assessment using analytic hierarchy process, management scenario development based on drought analysis, and evaluation of benefits obtained. Sokcho City was chosen as the study area, and the application of derived operation scenarios for surface and subsurface reservoirs revealed that water of 4.9∼7.4 million cubic meters a year can be attainable additionally. The developed methodology enables one to devise management schemes and to quantify their effectiveness, which makes the method useful for water resources planners as well as practitioners.

Analysis of Boryeong dam diverted tunnel operation effect using reservoir simulation (저수지 모의운영 기법을 활용한 보령댐 도수로 운영효과 분석)

  • Choi, Youngje;Ahn, Jaehwang;Yi, Jaeeung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.184-184
    • /
    • 2016
  • 최근 기후변화로 인하여 과거에는 발생하지 않았던 기상재해의 발생이 빈번해지고 있으며 그 피해규모도 전 세계적으로 증가하고 있다. 그 중 가뭄은 용수공급에 가장 직접적으로 영향을 미치는 원인이다. 우리나라에서는 2010년 이후 지속적인 가뭄이 발생하고 있다. 특히 2015년 금강서해유역의 보령강우관측소에서 연강우량은 783.1 mm로 보령강우관측소의 연평균강우량 1,244.3 mm 대비 62.9%에 불과하였다. 특히 많은 강우량이 집중되는 8월 누적강우량은 30.2 mm(예년대비 7%), 9월 누적강우량은 13.3 ??(예년대비 6%)로 보령지역에서는 강우 부족에 의한 가뭄이 2015년 이후 현재에도 진행 중이다. 국토교통부는 보령지역에 2016년 봄까지 충분한 강우가 내리지 않는다면 보령댐의 용수공급이 불가능할 것으로 판단하여 금강에 위치한 백제보 하류와 보령댐 상류를 연결하는 보령댐 도수로를 계획하였다. 국내에서 용수공급을 위하여 도수로를 이용한 사례로는 안동-임하댐 연결 도수로와 임하댐과 영천댐을 연결한 영천도수로 등이 있으며 관련된 연구로는 도수로 운영 이후 댐의 가용 수자원량을 분석한 사례가 있다. 본 연구에서는 도수로를 통해 보령댐으로 공급된 수량이 보령댐의 생공용수 공급에 미치는 영향을 분석하고자 하였으며 분석을 위해 미 육군공병단에서 개발한 저수지 모의운영 소프트웨어인 HEC-ResSim을 이용하여 보령댐이 완공된 1998년부터 2015년까지 18년 동안 보령댐 저수지 모의운영을 실시하였다. 모의운영 조건으로는 도수로 운영조건 및 용수공급 조정기준을 고려하여 케이스별로 모의운영을 실시하였고 그 결과를 바탕으로 이상갈수 시 공급순위가 가장 높은 생공용수의 공급신뢰도를 이용하여 도수로 운영효과를 비교 분석하였다.

  • PDF

Development and Validation of A Decision Support System for the Real-time Monitoring and Management of Reservoir Turbidity Flows: A Case Study for Daecheong Dam (실시간 저수지 탁수 감시 및 관리를 위한 의사결정지원시스템 개발 및 검증: 대청댐 사례)

  • Chung, Se-Woong;Jung, Yong-Rak;Ko, Ick-Hwan;Kim, Nam-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.293-303
    • /
    • 2008
  • Reservoir turbidity flows degrade the efficiency and sustainability of water supply system in many countries located in monsoon climate region. A decision support system called RTMMS aimed to assist reservoir operations was developed for the real time monitoring, modeling, and management of turbidity flows induced by flood runoffs in Daecheong reservoir. RTMMS consists of a real time data acquisition module that collects and stores field monitoring data, a data assimilation module that assists pre-processing of model input data, a two dimensional numerical model for the simulation of reservoir hydrodynamics and turbidity, and a post-processor that aids the analysis of simulation results and alternative management scenarios. RTMMS was calibrated using field data obtained during the flood season of 2004, and applied to real-time simulations of flood events occurred on July of 2006 for assessing its predictive capability. The system showed fairly satisfactory performance in reproducing the density flow regimes and fate of turbidity plumes in the reservoir with efficient computation time that is a vital requirement for a real time application. The configurations of RTMMS suggested in this study can be adopted in many reservoirs that have similar turbidity issues for better management of water supply utilities and downstream aquatic ecosystem.

Modeling the Effect of Intake Depth on the Thermal Stratification and Outflow Water Temperature of Hapcheon Reservoir (취수 수심이 합천호의 수온성층과 방류 수온에 미치는 영향 모델링)

  • Sun-A Chong;Hye-Ji Kim;Hye-Suk Yi
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.6
    • /
    • pp.473-487
    • /
    • 2023
  • Korea's multi-purpose dams, which were constructed in the 1970s and 1980s, have a single outlet located near the bottom for hydropower generation. Problems such as freezing damage to crops due to cold water discharge and an increase the foggy days have been raised downstream of some dams. In this study, we analyzed the effect of water intake depth on the reservoir's water temperature stratification structure and outflow temperature targeting Hapcheon Reservoir, where hypolimnetic withdrawal is drawn via a fixed depth outlet. Using AEM3D, a three-dimensional hydrodynamic water quality model, the vertical water temperature distribution of Hapcheon Reservoir was reproduced and the seasonal water temperature stratification structure was analyzed. Simulation periods were wet and dry year to compare and analyze changes in water temperature stratification according to hydrological conditions. In addition, by applying the intake depth change scenario, the effect of water intake depth on the thermal structure was analyzed. As a result of the simulation, it was analyzed that if the hypolimnetic withdrawal is changed to epilimnetic withdrawal, the formation location of the thermocline will decrease by 6.5 m in the wet year and 6.8 m in the dry year, resulting in a shallower water depth. Additionally, the water stability indices, Schmidt Stability Index (SSI) and Buoyancy frequency (N2), were found to increase, resulting in an increase in thermal stratification strength. Changing higher withdrawal elevations, the annual average discharge water temperature increases by 3.5℃ in the wet year and by 5.0℃ in the dry year, which reduces the influence of the downstream river. However, the volume of the low-water temperature layer and the strength of the water temperature stratification within the lake increase, so the water intake depth is a major factor in dam operation for future water quality management.

Framework for Optimum Scale Determination for Small Hydropower Development Using Economic Analysis (경제성분석에 의한 소수력 개발의 최적규모 결정 방안)

  • Kim, Kil-Ho;Yi, Choong-Sung;Lee, Jin-Hee;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.12
    • /
    • pp.995-1005
    • /
    • 2007
  • This study presents a framework for optimum scale determination for small hydropower development in a river basin. The framework includes the construction of hydrology and topography data, the simulation of hydropower operation, the economic analysis, and the determination of optimum scale of the small hydropower. The optimum scale of design flow and facility are determined by Net Present Value among economic analysis indices. The investment cost is estimated by the cost function derived from the construction cost of existing small hydropower plants. The benefit from power generation is estimated by the price announced by government. The presented framework is applied to the two potential sites in Cho River basin for the dam and run-of-river type of plants. Finally, the sensitivity analysis for a design flow and scale of the plant is performed for the each site. The usage of the framework presented in the study is highly expected for the estimation of potential hydropower resources or the decision support tool for a proprietor by estimating the optimum scale and economical feasibility in advance.

Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis (극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hwang, Kyu-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.733-745
    • /
    • 2010
  • Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.

Reservoir Operating System Using Sampling Stochastic Dynamic Programming for the Han River Basin (표본 추계학적 동적계획법을 사용한 한강수계 저수지 운영시스템 개발)

  • Eum, Hyung-Il;Park, Myung-Ky
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.1
    • /
    • pp.67-79
    • /
    • 2010
  • Korea water resources corporation (K-Water) has developed the real-time water resources management system for the Nakdong and the Geum River basin to efficiently operate multi-purpose dams in the basins. This study has extended to the Han River basin for providing an effective ending target storage of a month to the real-time water resources management system using Sampling Stochastic Dynamic Programming (SSDP), consequently increasing the efficiency of the reservoir system. The optimization model were developed for three reservoirs, named Soyang, Chungju, and Hwacheon, with high priority in terms of the amounts of effective capacity and water supply for the basin. The number of storage state variable for each dam to set an optimization problem has been assigned from the results of sensitivity analysis. Compared with the K-water operating policy with the target water supply elevations, the optimization model suggested in this study showed that the shortfalls are decreased by 37.22 MCM/year for the required water demands in the basin, even increasing 171 GWh in hydro electronic power generation. In addition, the result of a reservoir operating system during the drawdown period applied to real situation demonstrates that additional releases for water quality or hydro electronic power generation would be possible during the drawdown period between 2007 and 2008. On the basis of these simulation results, the applicability of the SSDP model and the reservoir operating system is proved. Therefore, the more efficient reservoir operation can be achieved if the reservoir operating system is extended further to other Korean basins.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.