• Title/Summary/Keyword: simulation of concrete structure

Search Result 273, Processing Time 0.024 seconds

An Analysis of Factors Influencing Insulation Performance of Inorganic Autoclaved Lightweight Concrete Sandwich Wall Panels Using Shear Connectors (전단연결재를 적용한 무기계 경량기포콘크리트(ALC) 샌드위치 외벽 패널의 단열성능에 미치는 영향요인 분석)

  • Kang, Dong Howa;Kang, Dong Hwa;Shin, Dong Hyeon;Kim, Hyung Joon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • The purpose of this study was to analyze factors influencing insulation performance of inorganic Autoclaved Lightweight Concrete(ALC) sandwich wall panels with the application of shear connectors. To analyze the effect of shear connectors on the thermal performance of sandwich wall panels, heat transfer analysis was conducted by using the three-dimensional heat transfer simulation software. Four types of shear connector such as Pin, Clip, Grid, and Truss were selected for insulation performance analysis. Thermal bridge coefficient was calculated by varying typical panel thickness and shear connector thickness and materials such as steel, aluminum, and stainless steel. The results showed that Grid and Truss type widely distributed along the section of sandwich wall panel had a great influence on the thermal bridge coefficient by changing the influence factors. Based on the results of thermal and structural performance analysis, effective heat transmission coefficient of the sandwich wall panel satisfying the passive house insulation criteria was calculated. As a result, it was found that heat transmission coefficient was increased from $0.132W/m^2{\cdot}K$ to $0.141{\sim}0.306W/m^2{\cdot}K$ depending on the shear connector types and materials. In the majority of cases, the passive house insulation criteria was not satisfied after using shear connectors. The results of this study were likely to vary according to how influence factors were set, but it is important to apply the methods that reduce the thermal bridge when there would be a possibility of greatly affecting the insulation performance.

A Numerical study on the Moisture Transport of Concrete Tunnel Linings with the Sprayable Waterproofing Membrane (뿜칠 방수 멤브레인이 시공된 터널 라이닝의 수분이동에 관한 수치해석 연구)

  • Lee, Chulho;Choi, Soon-Wook;Kang, Tae-Ho;Chang, Soo-Ho
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The sprayable waterproofing membrane is installed between shotcrete to provide crack bridging and hence prevent flow of liquid water as a waterproofing system. Because of its material characteristics, the sprayable membrane can be constructed at more complex structure than sheet membrane. The main component of the sprayable waterproofing membrane is a polymer-based material, therefore, moisture can migrate through sprayable waterproofing membrane materials by capillary and vapor diffusion mechanisms. The moisture transport mechanisms can have an influence on the degree of saturation and may influence the pore pressure and risk of freeze-thaw damage on concrete linings and membrane. In this study, long-term hygrothermal behavior was simulated with considering moisture transport and long-term effects on saturation of tunnel linings. From the simulation, due to water absorption and vapor transport properties of sprayable membrane, change of relative humidity and water content in tunnel lining can be evaluated.

The Experimental Study on Hydration Properties of Quaternary Component Blended High Fluidity Concrete with CO2 Reduction (탄소저감형 4성분계 고유동 콘크리트의 수화 특성에 관한 연구)

  • Choi, Yun-Wang;Oh, Sung-Rok;Jo, Jun-Hee;Kang, Hyun-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.403-413
    • /
    • 2017
  • In this paper, to increase the use of industrial byproducts for $CO_2$ reduction and to improve construction performance, it was manufactured that $CO_2$ reduction type quaternary component high fluidity concrete (QC-HFC) with Reduced cement usage by more than 80% and its quality and hydration characteristics were evaluated. QC-HFC was found to satisfy the target performance, and the flow and mechanical properties were similar to those of conventional concrete. The drying shrinkage of QC-HFC decreased about twice compared with the conventional blend, and the hydration heat decreased about 36%. As a result, it can be concluded that the amount of cracks can be reduced by reducing temperature stress due to hydration heat reduction effect and reducing deformation due to relatively small temperature difference between inside and outside. Also, As a result of the simulation of the mass structure, the temperature cracking index of QC-HFC is 1.1 or more, and the cracking probability is reduced by about 35%, so that the crack due to temperature can be reduced.

Vibration measurement of deformed structure of composite material: Target-free vision-based approach

  • Rana Muhammad Akram Muntazir;Abdur Rauf;Mohamed A. Khadimallah;Ikram Ahmad;Hamdi Ayed;Lubna Rasool;Muzamal Hussain;Abir Mouldi;Bazal Fatima;Sehar Asghar;Essam Mohammed Banoqitah
    • Advances in concrete construction
    • /
    • v.17 no.3
    • /
    • pp.159-165
    • /
    • 2024
  • The interaction of short range zigzag single walled carbon nanotubes CNTs based on modified elasticity model is studied in this paper. The numerical accurate results are presented. Through this model the vibrational frequency of zigzag (5, 0), (12, 0) single-walled CNTs with certain end conditions are estimated. The natural frequencies of single walled carbon nanotubes are obtained by elasticity model. It is considered for various estimation of height-to-diameter ratio of zigzag tube. This simulation is performed to quantify small scale effects. Moreover, the natural frequencies increase by increasing the height-to-diameter ratio. These frequencies are very sensitive with low height-to-diameter ratio. The feasibility and effective use of present model is explained by comparison of outputs of earlier investigations.

Fragility assessment of RC bridges using numerical analysis and artificial neural networks

  • Razzaghi, Mehran S.;Safarkhanlou, Mehrdad;Mosleh, Araliya;Hosseini, Parisa
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.431-441
    • /
    • 2018
  • This study provides fragility-based assessment of seismic performance of reinforced concrete bridges. Seismic fragility curves were created using nonlinear analysis (NA) and artificial neural networks (ANNs). Nonlinear response history analyses were performed, in order to calculate the seismic performances of the bridges. To this end, 306 bridge-earthquake cases were considered. A multi-layered perceptron (MLP) neural network was implemented to predict the seismic performances of the selected bridges. The MLP neural networks considered herein consist of an input layer with four input vectors; two hidden layers and an output vector. In order to train ANNs, 70% of the numerical results were selected, and the remained 30% were employed for testing the reliability and validation of ANNs. Several structures of MLP neural networks were examined in order to obtain suitable neural networks. After achieving the most proper structure of neural network, it was used for generating new data. A total number of 600 new bridge-earthquake cases were generated based on neural simulation. Finally, probabilistic seismic safety analyses were conducted. Herein, fragility curves were developed using numerical results, neural predictions and the combination of numerical and neural data. Results of this study revealed that ANNs are suitable tools for predicting seismic performances of RC bridges. It was also shown that yield stresses of the reinforcements is one of the important sources of uncertainty in fragility analysis of RC bridges.

Composite deck construction for the rehabilitation of motorway bridges

  • Greiner, R.;Ofner, R.;Unterweger, H.
    • Steel and Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.67-84
    • /
    • 2002
  • Traffic decks of steel or composite motorway bridges sometimes provide the opportunity of using the composite action between an existing steel deck and a reinforced concrete plate (RC plate) in the process of rehabilitation, i.e., to increase the load-carrying capacity of the deck for concentrated traffic loads. The steel decks may be orthotropic decks or also unstiffened steel plates, which during the rehabilitation are connected with the RC plate by shear studs, such developing an improved local load distribution by the joint behaviour of the two plate elements. Investigations carried out, both experimentally and numerically, were performed in order to quantitatively assess the combined static behaviour and to qualitatively verify the usability of the structure for dynamic loading. The paper reports on the testing, the numerical simulation as well as the comparison of the results. Conclusions drawn for practical design indicated that the static behaviour of these structures may be very efficient and can also be analysed numerically. Further, the results gave evidence of a highly robust behaviour under fatigue equivalent cyclic traffic loading.

Development of a Concrete Pump Truck's Core Pump Model and Its Validation (콘크리트 펌프트럭의 코어펌프 해석모델개발 및 신뢰성 검토)

  • Park, Sung Su;Noh, Dae Kyung;Lee, Geun Ho;Lee, Dae Hee;Jang, Ju Sup
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2018
  • This study is a first step toward reducing surge pressure, and it has another purpose, which is to developing an analysis model which can closely analyze a hydraulic circuit and be used in design. For development of analysis model, SimulationX, a commercial program, is used. The study progress methods are as follows. By analyzing the structure and operating mechanisms of each part of the hydraulic system of the pump truck and referring its parameters, develop a single component model. Assemble the developed single component model, and make an overall analysis the model. By comparing the similarities between the developed model and the actual system's test results, validate the reliability of the analysis model.

Full Scale Experiment of Fire Phenomena in case of Reinforced Concrete Structured Apartment Building -Regarding the enclosure fire growth and the structural fire vulnerability findings- (철근콘크리트 구조 공동주택 실물화재 실험 연구 -화재성상 파악 및 취약부위 도출을 중심으로-)

  • 윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.41-50
    • /
    • 1996
  • In many of the developed countries, there have been continuous offers to observe and understand the fire phenomenon for the establishment of fire safety and the development of fire protection technology. In the past, full scale fire experiments have been conducted for the development of the construction technology and the design methods in order to secure the safety of the buildings and the people as well. This study aims at the statistics concerning the structural vulnerablity parts based on the full scale fire experiment in one of the apartment buildings that represents the average households in Korea, thereby acquring the experimental technology, and the basic data needed for the prediction of enclosure fire phenomenon which is critical for the establishment of evalution methods through simulation, and has also presents secured problems concerning the balcony structure and the window types that requires imediate improvement.

  • PDF

Correlation between Channel-Flow Test Results and Rheological Properties of Freshly Mixed Mortar (굳지 않은 모르타르의 채널 플로와 레올로지 특성의 상관관계)

  • Shin, Tae Yong;Lee, Jin Hyun;Kim, Jae Hong;Kim, Myeong Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.237-244
    • /
    • 2016
  • The workability of mortar determines its construction performance in a structure showing its designed resistance to external loads. Measuring the rheological properties of mortar is one way of quantifying its workability, but its field-applications are limited due to economical and spatial issues. The robustness of the slump flow test allows its use for evaluating the workability of mortar, even though it is a rather qualitative test method. This paper proposes a channel flow test and develops a correlation between its result and the rheological properties of mortar. The volume-of-fluid simulation for the channel flow test was accomplished, and a numerical database for the correlation was composed. A correlation model to estimate the rheological properties of mortar using the results of the channel flow test as inputs is proposed.

Indoor Propagation Channel Modeling Using the Finite Difference Time Domain Method (시간영역 유한차분법을 이용한 실내 전파 채널 모델링)

  • Chung, Sun-Oh;Lim, Yeong-Seog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.9
    • /
    • pp.1847-1853
    • /
    • 2011
  • Analysis of an indoor propagation channel has conventionally used the ray-tracing method. But, in this paper, we had modelling the channel for three dimensional indoor structure by the finite difference time domain method for three dimensional full wave analysis. An excitation signal of the FDTD method used plane wave. The plane wave was excited using the total field/scattered field method. And absorbing boundary condition used the perfectly matched layer method with 7 layers. An living room for the simulation of indoor channel modeling is surrounded the wall that be composed of the wood, the conductor, the glass and concrete. When there are furniture in the living room or not, it were simulated, respectively. As simulation results, we could identify the fading effect of multipath at indoor propagation environment, calculated mean excess delay and rms delay spread for the receiver design.