• 제목/요약/키워드: simulation model interface

검색결과 545건 처리시간 0.038초

방공교전모델(DADSim) 개발 및 활용사례 (Distributed Air Defense Simulation Model and its Applications)

  • 최상영;김의환
    • 한국국방경영분석학회지
    • /
    • 제27권2호
    • /
    • pp.134-148
    • /
    • 2001
  • In this paper, air-defense simulation model, called "DADSim", will be introduced. DADSim(Distributed Air Defense Simulation Model) was developed by Modeling&Simulation Lab of K.N.D.U.(Korea National Defence Univ) Weapon Systems Department. This model is an analysis-purpose model in the engagement-level. DADSim can simulate not only the global air-defense or Korean Peninsula but also the local air-defense or a battle field. DADSim uses the DTED(digital terrain elevation data) LeveII it for the representation of peninsula terrain characteristics. The weapon systems cooperated in the model are low/medium-range missile systems such as HAWK, NIKE, SAM. DADSim was designed in the way of object-oriented development method, implemented by C++ language. The simulation view is an event-sequenced object-orientation. For the convenience of input, output analysis, GUI(Graphic User Interface) of menu, window, dialog box, etc. are provided to the user, For the execution of DADSim, Silicon Graphic IRIX 6.3 or high version is required. DADSim can be used for the effectiveness analysis of­defence systems. Some illustrative examples will be shown in this paper.

  • PDF

A Generalized Model for Homogenized Reflectors

  • Pogosbekyan, Leonid;Kim, Yeong-Il;Kim, Young-Jin;Joo, Hyung-Kook
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.40-45
    • /
    • 1996
  • A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters: homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the celt interfaces. The idea of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K.Koebke and K.Smith. The method of K.Smith can be simulated within framework of new method, while the new method approximates heterogeneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are: improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the K.Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation; (c) mixed UO2/MOX core simulation, The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in- core conditions.

  • PDF

종합정보통신망 U-접속 선로부호의 성능에 관한 시뮬레이션 (A Simulation on the Performance of Line Codes for ISDN U-Interface)

  • 강구홍;김대영;백제인
    • 대한전자공학회논문지
    • /
    • 제27권5호
    • /
    • pp.672-683
    • /
    • 1990
  • The line code for ISDN subscriber loops is a critical choice in designing U-interface transceiver, since it affects system performance in a crucial way. This paper provides the performance analysis of U-interface transceiver systems employing four different line codes AMI, MMS43, VMDB5, and 2B1Q. The codes are compared using computer simulation studies, and three performance parameters of the four codes such as power spectrum, eye width, and error probability are used for the comparison. The simulation model consists of the encoder, transmit filter (root-raised cosine filter), channel, receive filter, zero-forcing equalizer, sampler, and decoder. The near-end crosstalk and addive white gaussian noise are considered as teh principal impediments.

  • PDF

FBW 헬리콥터 모델 역변환 비행제어법칙 설계 및 검증 (Design and Validation of Model Inversion Flight Control Law for Fly By Wire Helicopter)

  • 김종섭;조인제;이승덕;이한주
    • 한국항공우주학회지
    • /
    • 제40권8호
    • /
    • pp.678-687
    • /
    • 2012
  • 우천, 안개 낀 날씨 및 먼지 등에 의해 시계가 확보되지 않는 비행 환경에서의 헬리콥터의 안정성(stability) 및 비행성(flying quality)을 향상시키기 위해 모델 역변환 제어(Model Inversion Control) 방식의 전자식 비행제어시스템(Fly-By-Wire Flight Control System)의 적용은 필수적이다. 선진 항공사인 미국의 Bell-Sikorsky사와 유럽 컴소시움인 NHI(NH Industries)사는 FBW 비행제어시스템을 V-22와 NH-90의 헬리콥터 양산에 적용한 바 있다. 본 논문에서는 BO-105 모델을 기반으로 CONDUIT(Control Designer's Unified Interface)을 활용하여 제자리 비행영역에서 모델 역변환 비행제어법칙을 설계하였으며, 헬리콥터 비행조종성 국제규격인 ADS-33E-PRF을 기준으로 평가하였다. 설계된 비행제어법칙을 CONDUIT과 HETLAS(HElicopter Trim Linearization And Simulation)를 기반으로 평가한 결과, ADS-33E-PRF에서 제시하고 있는 예측 조종성(predicted handling quality) 규격에 대해 비행조종성 Level 1을 만족시킬 수 있었다.

Numerical Simulation of Transport Phenomena for Laser Full Penetration Welding

  • Zhao, Hongbo;Qi, Huan
    • Journal of Welding and Joining
    • /
    • 제35권2호
    • /
    • pp.13-22
    • /
    • 2017
  • In laser full penetration welding process, full penetration hole(FPH) is formed as a result of force balance between the vapor pressure and the surface tension of the surrounding molten metal. In this work, a three-dimensional numerical model based on a conserved-mass level-set method is developed to simulate the transport phenomena during laser full penetration welding process, including full penetration keyhole dynamics. Ray trancing model is applied to simulate multi-reflection phenomena in the keyhole wall. The ghost fluid method and continuum method are used to deal with liquid/vapor interface and solid/liquid interface. The effects of processing parameters including laser power and scanning speed on the resultant full penetration hole diameter, laser energy distribution and energy absorption efficiency are studied. The model is validated against experimental results. The diameter of full penetration hole calculated by the simulation model agrees well with the coaxial images captured during laser welding of thin stainless steel plates. Numerical simulation results show that increase of laser power and decrease of welding speed can enlarge the full penetration hole, which decreases laser energy efficiency.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION - PART I: POWERTRAIN MODELLING

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.459-468
    • /
    • 2006
  • The objective of this paper is the development of the forward-looking dynamic simulation model of a hybrid electric vehicle(HEV) for a fuel economy study. The specification of the vehicle is determined based on two factors, engine peak power to curb weight ratio and specific engine power. The steady state efficiency models of the powertrain components are explained in detail. These include a spark ignition direct injection(SIDI) engine, an integrated starter alternator(ISA), and an infinitely variable transmission(IVT). The paper describes the integration of these models into a forward facing dynamic simulation diagram using the AMESim environment. Appropriate vehicle and driver models have been added and described. The controller was designed in Simulink and was combined with the physical powertrain model by the co-simulation interface. Finally, the simulation results of the HEV are compared with those of a baseline vehicle in order to demonstrate the fuel economy potential. Results for the vehicle speed error and the fuel economy over standard driving cycles are illustrated.

레이더 주파수대별 콘크리트내 층간 연속공동의 시뮬레이션 해석 (Simulation Analysis of radar responses with frequencies on subsurface voids in concrete)

  • 박석균
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.1279-1284
    • /
    • 2000
  • This study introduces a simulation model of radar responses with frequencies on subsurface voids in concrete. In this model, the resolution and the attenuation according to radar frequencies in each interface which has different electromagnetic property are analyzed. This model aims to select the best frequency of radar which can analyze the thickness of voids in concrete from radar response. It also can be applied to estimate the limitation of propagation depth of radar on subsurface voids in concrete. The computed results show the radar images based on radar signal processing using convolution technique.

Comparative analysis of turbulence models in hydraulic jumps

  • Lobosco, Raquel J.;da Fonseca, David O.;Jannuzzia, Graziella M.F.;Costa, Necesio G.
    • Coupled systems mechanics
    • /
    • 제8권4호
    • /
    • pp.339-350
    • /
    • 2019
  • A numerical simulation of the incompressible multiphase hydraulic jump flow was performed to compare the interface prediction through the use of the three RANS turbulence models: $k-{\varepsilon}$, $RNGk-{\varepsilon}$ and SST $k-{\omega}$. A three dimensional no submerged hydraulic jump and a two dimensional submerged hydraulic jump were modeled. Both the geometry and the mesh were created using the open source Gmsh code. The project's geometry consists of a rectangular channel with length and height differences between the two dimensional and three dimensional simulations. Uniform hexahedral cells were used for the mesh. Three refining meshes were constructed to allow to verify simulation convergence. The Volume of Fluid (abbr. VOF) method was used for treatment of the air-water surface. The turbulence models were evaluated in three distinct set up configurations to provide a greater accuracy in the flow representation. In the two-dimensional analysis of a submerged hydraulic jump simulation, the turbulence model RNG RNG $k-{\varepsilon}$ provided a better interface adjust with the experimental results than the model $k-{\varepsilon}$ and SST $k-{\omega}$. In the three-dimensional simulation of a no-submerged hydraulic jump the k-# showed better results than the SST $k-{\omega}$ and RNG $k-{\varepsilon}$ capturing the height and length of the ledge with a better fit with the experimental results.

Numerical Simulation of Electro-Mechanical Impedance Response in Cable-Anchor Connection Interlace

  • Nguyen, Khac-Duy;Kim, Jeong-Tae
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.11-23
    • /
    • 2011
  • In this study, a finite element(FE) analysis on electro-mechanical impedance response of cable-anchor connection interface under various anchor force is presented. In order to achieve the objective, the following approaches are implemented. Firstly, an interface washer coupled with piezoelectric(PZT) material is designed for monitoring cable-force loss. The interface washer is a small aluminum plate on which a PZT patch is surface-bonded. Cable-force loss could be monitored by installing the interface washer between the anchor plate and the anchorage of cable-anchor connection and examining the changes of impedance of the interface washer. Secondly, a FE model for cable-anchor connection is established to examine the effect of cable-force on impedance response of interface washer. Also, the effects of geometrical and material properties of the interface washer on impedance responses under various cable-forces are investigated. Finally, validation of the FE analysis is experimentally evaluated by a lab-scale cable-anchor connection.

생산제어시스템의 시뮬레이션모델 자동생성

  • 이상훈;조현보;정무영
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1996년도 춘계공동학술대회논문집; 공군사관학교, 청주; 26-27 Apr. 1996
    • /
    • pp.631-634
    • /
    • 1996
  • This paper describes an intelligent user interface to define simulation models from the process and resource models. It also explains an automatic program generator of discrete event simulation model for shop floor control in a flexible manufacturing system. Especially, the paper is focused on the design and development of methodology to automate simulation modeling from the system description. Describing a shop floor control system in simulation is not an easy task since it must resolve various decision problems such as deadlock resolution, part dispatching, resource conflict resolution, etc. The program generator should be capable of constructing a complete discrete simulation models for a multi-product and multi-stage flow shop containing the above mentioned problems.

  • PDF