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ABSTRACT

A new concept of equivalent homogenization is proposed. The concept employs new set of homogenized parameters:
homogenized cross sections (XS) and interface matrix (IM), which relates partial currents at the cell interfaces. The idea
of interface matrix generalizes the idea of discontinuity factors (DFs), proposed and developed by K.Koebke and K.Smith.
The method of K.Smith can be simulated within framework of new method, while the new method approximates hetero-
geneous cell better in case of the steep flux gradients at the cell interfaces. The attractive shapes of new concept are:
improved accuracy, simplicity of incorporation in the existing codes, equal numerical expenses in comparison to the
K.Smith's approach. The new concept is useful for: (a) explicit reflector/baffle simulation; (b) control blades simulation;
(c) mixed UO2/MOX core simulation.

The offered model has been incorporated in the finite difference code and in the nodal code PANBOX. The numerical
results show good accuracy of core calculations and insensitivity of homogenized parameters with respect to in- core
conditions.

1. INTRODUCTION

A new concept of equivalent homogenization has been developed to take into account internal asymmetry and het-
erogeneity of L-shaped reflector. We analyzed the fitness for explicit reflector simulation of two most popular homogeni-:
zation techniques. We found out, that the first one, proposed by K.Koebke introduces undesirable symmetry in equivalent
cell. The second one, proposed by K.Smith, has enough degrees of freedom in order to describe asymmetry of L- shaped
reflector. However, the accuracy of this model can be improved without additional numerical expenses. The theory of
K.Smith supposes continuity of current in order to ensure neutron conservation at the cell interfaces. In contrast to the
concept of K.Smith, the offered concept admits discontinuity of net current. In fact, discontinuity of current suggests
very useful additional degree of freedom for baffle simulation. The baffle or control blade can be considered as absorbing
thin layer at the cell interfaces. Discontinuity of current simulates absorption in the layer. In spite of simplification of
geometry of absorber, the thin layer approximates absorbing blade/baffle better than discontinuity factors of flux do. The
procedure for derivation of equivalent parameters from 2D referenced solution has been developed.

The equivalent cell consists of homogeneous cell, covered by thin layer with the given response properties. The inter-
face matrix simulates response of thin layer. Thus, the new set of homogenized parameters includes IM and XS.

By the definition, IM preserves absorption rate of 2D baffle. From the other standpoint, the offered explicit model
of reflector/baffle combines convenient 2D nodal/finite difference approach inside the homogeneous cell and 1D analyti-
cal solution for the baffle. The IM provides 1D analytical solution. The possibility of using 1D model can be derived
from three fundamental facts: (1) baffle is optically thin for the fast neutrons; (2) for the thermal neutrons the transverse
leakages Lx,Ly have a ratio of approximately 10:1; (3) conservation of absorption rate for the baffle ensure accuracy
of full-core model. Note, 1D model provides good accuracy for a small variation of fast flux within the optically thin
baffle (10% of diffusion length). Additionally, for fast neutrons the ratio Lx/Ly is about 1:3. For thermal neutrons the size
of baffle is approximately equal to 1 diffusion length, while the ratio Lx/Ly is about 1:10. The small transverse leakage
within the baffle can be neglected in the distance of 1 diffusion length . Hence, 1D model of baffle should provide
more than enough accuracy. Besides, corrected interface matrix (CIM) can be employed instead of IM to preserve
response of cell. The CIM is derived from assumption that the set CIM+XS+NODAL METHOD should preserve
referenced incoming and outgoing currents at the boundary of cell.

IL HOMOGENIZATION PROCEDURE

The procedure derives XS and IM from the known high-order 2D solution for fragment of core. We can employ HE-
LIOS/MCNP/CASMO code in order fo get high-order solution. The procedure uses standard method for calculating XS of
pure water (or water with boron acid) and the special procedure for IM calculation, presented in the next section.

The starting point of homogenization technique is an assumption that the baffle (or control blade) can be compressed
up to thin layer. The picture 1 shows transformation of cell. The transformed cell conserves weight of water. Also, IM
by the definition conserves absorption rate for L-shaped/slab baffle in the following sense. The thin layer conserves ab-
sorption rate of the baffle under condition of conservation of surface-averaged flux and surface-averaged current at the
core-baffle interface. The original absorption rate for the baffle and partial currents at the core/baffle interface are sup-
posed known from HELIOS program, executed for 2D heterogeneous fragment of core. Hence, the thin layer simulate
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accurately absorption rate of 2D referenced solution for baffle. The last property ensure accuracy of homogenization
technique.

R=interface - R=interface »
matrix P, P

matrix

Picture 1. Transformation of heterogeneous baffle/reflector cell into

equivalent “homogenized” cell.
Here, d = thickness of baffle; d— 0; pw =density of water; h=width of fuel assembly
Y =pg(h- d(,)2 /(h —d)2 for L-shaped reflector; p“ =pg (h-dg,)/(h—d) for the slab reflector; the
subscript o labels initial values (before baffle compression).

II1. Derivation of interface matrix from 2D spectral calculations.

Suppose, the total partial currents through the external and internal boundary of baffle are known from 2D spectral calcu-
lations. For the simplicity, let us neglect slowing down in the baffle. Hence, we can treat thermal and fast group separately.

Using the simple relation of diffusion theory, derive neutron flux and net current: J=17 + - J-

o=2gt+77). Consider the baffle of volume V , whose boundary S = @V consists of two components
S=S 1 VY S 29 S N S & where S s L-shaped or slab interface between active core and baffle. Define:

des/jds J'st/jds (p’=£l(pdS/S[ldS; ¢’=£ZWS/S[IdS (1

The integrals are known from HELIOS or from MCNP calculation. Consider the thin layer, which has net currents J ! ,
J' at the left and right side respectively and absorption rate S 1 (J - J’ ) . Noting that,
- > - - > o ! ,
ABSORPTIONRATEOFBAFFLE=IZa(Pdr = &Jd S= f]d S+ de S=8 -J");
v s S

conclude: if (1) is true then the thin layer conserves absorption rate of baffle. Write the simple relation of 1D diffusion
theory for the baffle of thickness d.

J(x) =—=Dde/ dx . )
SIEG - Gel) oY e
JO)=J",9(0) =9’ -

=D/Z,.B=-L/D; a=cosh(d /L)y =sinh(d /L) =o* -1 3)

As far as the values (pl J ! (p’ J” are known, then we can derive OL,B,R. Combining (2), (3), write the
final expression:

a=(¢U +¢71) /(077 +¢' ") y=Va ~1.B= (a0 ~¢')/(7Y) @

. . 1 1
Note, if the coarse-mesh solution conserves referenced surface-averaged flux @ and surface-averaged current J at

the core-baffle interface, then interface matrix R simulates accurately absorption rate of referenced solution
(HELIOS,MCNP) for baffle. The interface matrix technique looks attractive for simulation of UO2/MOX interface. Rea-
sons: (a) IM simulates the region of steep flux gradients more accurately than polynomials; (b) diffusion theory does not
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work well at UO2/MOX interface, while IM conserves functionals of multigroup non-diffusional referenced solution. The
reasons (a), (b) are also true for core-reflector interface.

IV. Incorporation of interface matrix in finite difference scheme.

The starting point is the conventional approximation of currents:

J; =—Dy(9 - 9,)/(W2): Tl ==D,(0} ~9,)/(h/2). (5)

In contrast to the standard FD scheme, let us suppose the following interface boundary conditions:

R = interface matrix

Ji @i~ — e

WATER

1
?o ?,

Picture 2. Finite difference approximation.

Substitution (5) in (2) leads to the linear system, which has standard structure of FD system but new sense of mesh
coupling coefficients. Finally, the 5-point equation for 2D rectangular geometry is:

E)tpo—gAm:Qo: (6)

where —

P,=Z.h+ 24"3 ; X, = absorption cross section; @y = goh’; €)

k=1

A, =2d,/(gB7'd;" +a, +a,d]'d, + g,Bd,):  d; =D, [(h/2) ®)
B, =2d,(g,87'd;" +a,)/(2,87d;" +a, +a,d;'dy + 2,84, ): 9)

{ak =q, g, =7, if absorbing thin layer (baffle) divides two nodes; (10)
a, =1, g, =0, otherwise (ordinary case) (11

Note,incaseof @, =1, g, =0 we have standard finite difference formula for coupling coefficients:

A, =B, =2dd, [(d,+d,).

V. Incorporation of interface matrix in the PANBOX code.
To incorporate new concept of homogenized cell in PANBOX, we modify standard full-core model:

in —out - —out —yin
J =R'J +Pg; J =HJ

where the first linear system gives response of nodes and the second system defines topographical relation between in-

coming and outgoing currents. The standard approach supposes that the matrix H is the so-called permutation matrix,

having the following properties: (a) the matrix consists of 0 and 1; (b) the H contains only one non-zero element per row

and per column; (c) H x H = unit matrix. The offered concept of equivalent reflector supposes modification of H.

The concept employs the new coupling of partial currents at the core-reflector interface:



in in -1
Iu =AJ({W;A=2 2y (o ¥R (2 2
Jo J§ 1 -1 /B o j\-1 2

instead of standard coupling J 'fn =J Z’", J Z' =J }M. Here, the subscripts f,w label fuel assembly and water re-

spectively. Also, the new formula for multiplication factor K o = G/ (A +L+ A,,) is used to take into account

absorption within layer, where G=generation rate, A=absorption rate, L=leakage, A,, =absorption rate of layer. The
modified PANBOX uses the following algorithm for core-reflector interface:

(a) for given J }"’k calculate J }"“"m by solving standard 2D nodal equation for fuel assembly;

® put J‘l:;,k+| = (J}mt,k-H _AZZJ]:MI.I( )/Azl :
ink+1
(d) put J;n,IH—l = (J‘(:'uf'k-f-l _ Azzj;ut.k+l )/Azl :
(e) k=k+1 go to (a).

V.NUMERICAL RESULTS.

calculate by solving standard 2D nodal equation for reflector cell;

(c) for given J J;ut,kﬂ

The accuracy of interface matrix technique was tested on ZION-1 benchmark problem7.The following calculations were
made: (1) standard finite difference scheme with explicit baffle (FDE); (2) finite difference with homogeneous reflector
and interface matrix (FD-IM) at core-reflector interface; (3) PANBOX with interface matrix (PANBOX-IM) at core-
reflector interface. The FDE, FD-IM used 16*16 meshes per assembly, while PANBOX-IM used 4*4 meshes per
assembly. In order to provide proper comparison, IM was derived from FDE rather than from HELIOS. The partial
currents from FDE and equations (1)-(4) were used to calculate IM. The fig. 1 shows power distribution and mul-
tiplication factor for FDE, FD-IM, PANBOX-IM. The fig. 2 shows independency of model from in-core conditions. The
data for FDE, FD-IM, PANBOX-IM were: (a) ZION-1 benchmark data, with the exception for enrichment of one fuel
assembly facing at L-shaped reflector; (b) cross sections and interface matrix from “unperturbated” state of core. The fig.
3 compares FDE and FD-IM pin-by-pin powers at the region of L-shaped reflector.
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FDE : finite difference, explicit baffle simulation
FD-IM : finite difference, interface matrix boundary conditions
PANBOX-IM: PANBOX, interface matrix boundary conditions.
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Fig. 1. Power distribution for ZION-1 benchmark problem.
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Fig. 2. Independency of homogenized parameters from in-core conditions.




RELATIVE ERROR OF PIN-BY-PIN CALCULATION

X=10000*(B-A)/A
where A=pin power for FDE
B=pin power for FD-IM
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