• Title/Summary/Keyword: simulation functions

Search Result 2,037, Processing Time 0.027 seconds

Design of Fluorescence Multi-cancer Diagnostic Sensor Platform based on Microfluidics (미세 유체 기반의 형광 다중 암 진단 센서 플랫폼 설계)

  • Lee, B.K.;Khaliq, A.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.55-61
    • /
    • 2022
  • There is a major interest in diagnostic technology for multiple cancers worldwide. In order to reduce the difficulty of cancer diagnosis, a liquid biopsy technology based on a microfluidic device using trace amounts of biofluids such as blood is being studied. And optical biosensing, which measures the concentration of analytes through fluorescence imaging using biofluids, requires various strategies to improve sensitivity, and specialists and equipment are needed to carry out these strategies. This leads to an increase in diagnostic and production costs, and it is necessary to develop a technology to solve this problem. In this paper, we design and propose a fluorescent multi-cancer diagnostic sensing platform structure that implements passive self-separation technology and molecular recognition activation functions by fluid mixing, only with the geometry and microfluidic phenomena of microchannels based on self-driven flow by capillary force. In order to check the parameters affecting the performance of the plasma separation part of the designed sensor, the hydrodynamic diameter of the channel and the viscosity of the fluid were set as variables to confirm the formation of plasma separation flow through simulation. And finally, we propose an optimal sensor platform structure.

CNN Accelerator Architecture using 3D-stacked RRAM Array (3차원 적층 구조 저항변화 메모리 어레이를 활용한 CNN 가속기 아키텍처)

  • Won Joo Lee;Yoon Kim;Minsuk Koo
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.234-238
    • /
    • 2024
  • This paper presents a study on the integration of 3D-stacked dual-tip RRAM with a CNN accelerator architecture, leveraging its low drive current characteristics and scalability in a 3D stacked configuration. The dual-tip structure is utilized in a parallel connection format in a synaptic array to implement multi-level capabilities. It is configured within a Network-on-chip style accelerator along with various hardware blocks such as DAC, ADC, buffers, registers, and shift & add circuits, and simulations were performed for the CNN accelerator. The quantization of synaptic weights and activation functions was assumed to be 16-bit. Simulation results of CNN operations through a parallel pipeline for this accelerator architecture achieved an operational efficiency of approximately 370 GOPs/W, with accuracy degradation due to quantization kept within 3%.

Evaluation and Prediction of Post-Hepatectomy Liver Failure Using Imaging Techniques: Value of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging

  • Keitaro Sofue;Ryuji Shimada;Eisuke Ueshima;Shohei Komatsu;Takeru Yamaguchi;Shinji Yabe;Yoshiko Ueno;Masatoshi Hori;Takamichi Murakami
    • Korean Journal of Radiology
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2024
  • Despite improvements in operative techniques and perioperative care, post-hepatectomy liver failure (PHLF) remains the most serious cause of morbidity and mortality after surgery, and several risk factors have been identified to predict PHLF. Although volumetric assessment using imaging contributes to surgical simulation by estimating the function of future liver remnants in predicting PHLF, liver function is assumed to be homogeneous throughout the liver. The combination of volumetric and functional analyses may be more useful for an accurate evaluation of liver function and prediction of PHLF than only volumetric analysis. Gadoxetic acid is a hepatocyte-specific magnetic resonance (MR) contrast agent that is taken up by hepatocytes via the OATP1 transporter after intravenous administration. Gadoxetic acid-enhanced MR imaging (MRI) offers information regarding both global and regional functions, leading to a more precise evaluation even in cases with heterogeneous liver function. Various indices, including signal intensity-based methods and MR relaxometry, have been proposed for the estimation of liver function and prediction of PHLF using gadoxetic acid-enhanced MRI. Recent developments in MR techniques, including high-resolution hepatobiliary phase images using deep learning image reconstruction and whole-liver T1 map acquisition, have enabled a more detailed and accurate estimation of liver function in gadoxetic acid-enhanced MRI.

Smart Tour based on WEB (WEB 기반 스마트 관광)

  • Chang-Pyoung Han;You-Sik Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • Nowadays, based on the 4th Industrial Revolution, by using the CHATGPT function and 3D virtual reality technology, anyone can easily open a virtual environment WEB-based, smart tourism OPEN source and travel destination without having to directly visit the travel location in the real world. Using the API function, it provides the convenience of virtual tourism. However, this function does not work if the travel transportation system is suddenly changed due to sudden bad weather, travel operation information cannot be checked in real time, and due to a lack of flight cancellation information and passenger ship operation information, it cannot be used until the plane or ferry departs normally. A very inconvenient problem arises where you have to wait a long time in the waiting room. Therefore, in this paper, in order to solve this problem, automatic duty-free product information and automatic product payment functions were added even when passenger ship cancellations and operation information suddenly occur due to bad weather and multiple products are purchased during the trip. In addition, the computer simulation experiment was conducted on a WEB basis so that anyone can conveniently travel smartly.

Korean Soil Characteristics Database for SWAT-K Model (SWAT-K 모형의 국내 토양특성 정보 구축)

  • Lee, Jeong Eun;Kim, Chul-Gyum;Lee, Jeongwoo;Chung, Il-Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.495-501
    • /
    • 2024
  • SWAT-K (Soil and Water Assessment Tool-Korea) model is a long-term runoff model using a soil-centered water balance equation. Soil is crucial for simulating hydrological components, requiring a database (usersoil.dbf) with soil series attribute information. Since the soil property information estimated by soil transfer functions developed overseas does not reflect the characteristics of domestic soil, the Korea Institute of Civil Engineering and Building Technology has established the soil database, which incorporates the results of domestic soil surveys and research from the National Institute of Agricultural Sciences. This study provides a more detailed description of the hydrological component simulation process using soil property information and revises and supplements the previously established soil database to operate in the latest SWAT model. Additionally, by providing this database through the integrated water management platform, it is expected to be utilized not only in the SWAT-K model but also in various watershed hydrological models developed considering soil characteristics.

Comparison of Reliability of PSSC Girder Bridge for Different Limit States (PSSC 거더 교량의 한계상태별 신뢰도 비교)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.171-180
    • /
    • 2007
  • Reliability analysis of prestressed steel and concrete(PSSC) girders is conducted for deflection, stress and moment strength limit state. PSSC girder has strong advantages in terms of construction cost and vertical clearance for the span length of over 40 meters. In this paper, example PSSC girders with different span lengths, section dimensions and design stress levels are designed and analyzed to calculate the midspan deflection, stress and the section moment strength. Deflection limit state, stress limit state and strength limit state functions are assumed and the reliability indexes are obtained by Monte-Carlo simulation and Rackwitz-Fiessler procedure. The results show that the reliability of PSSC girder for deflection limit state is appropriately higher than the stress limit state and the reliability for moment strength is significantly conservative.

Development of the Whole Body 3-Dimensional Topographic Radiotherapy System (3차원 전신 정위 방사선 치료 장치의 개발)

  • Jung, Won-Kyun;Lee, Byung-Yong;Choi, Eun-Kyung;Kim, Jong-Hoon;An, Seung-Do;Lee, Seok;Min, Chul-Ki;Park, Cham-Bok;Jang, Hye-Sook
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.63-71
    • /
    • 1999
  • For the purpose of utilization in 3-D conformal radiotherapy and whole body radiosurgery, the Whole Body 3-Dimensional Topographic Radiation Therapy System has been developed. Whole body frame was constructed in order to be installed on the couch. Radiopaque catheters were engraved on it for the dedicated coordinate system and a MeV-Green immobilizer was used for the patient setup by the help of side panels and plastic rods. By designing and constructing the whole body frame in this way, geometrical limitation to the gantry rotation in 3-D conformal radiotherapy could be minimized and problem which radiation transmission may be altered in particular incident angles was solved. By analyzing CT images containing information of patient setup with respect to the whole body frame, localization and coordination of the target is performed so that patient setup error may be eliminated between simulation and treatment. For the verification of setup, the change of patient positioning is detected and adjusted in order to minimize the setup error by means of comparison of the body outlines using 3 CCTV cameras. To enhance efficiency of treatment procedure, this work can be done in real time by watching the change of patient setup through the monitor. The method of image subtraction in IDL (Interactive Data Language) was used to visualize the change of patient setup. Rotating X-ray system was constructed for detecting target movement due to internal organ motion. Landmark screws were implanted either on the bones around target or inside target, and variation of target location with respect to markers may be visualized in order to minimize internal setup error through the anterior and the lateral image information taken from rotating X-ray system. For CT simulation, simulation software was developed using IDL on GUI(Graphic User Interface) basis for PC and includes functions of graphic handling, editing and data acquisition of images of internal organs as well as target for the preparation of treatment planning.

  • PDF

A Simulation-Based Investigation of an Advanced Traveler Information System with V2V in Urban Network (시뮬레이션기법을 통한 차량 간 통신을 이용한 첨단교통정보시스템의 효과 분석 (도시 도로망을 중심으로))

  • Kim, Hoe-Kyoung
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.121-138
    • /
    • 2011
  • More affordable and available cutting-edge technologies (e.g., wireless vehicle communication) are regarded as a possible alternative to the fixed infrastructure-based traffic information system requiring the expensive infrastructure investments and mostly implemented in the uninterrupted freeway network with limited spatial system expansion. This paper develops an advanced decentralized traveler information System (ATIS) using vehicle-to-vehicle (V2V) communication system whose performance (drivers' travel time savings) are enhanced by three complementary functions (autonomous automatic incident detection algorithm, reliable sample size function, and driver behavior model) and evaluates it in the typical $6{\times}6$ urban grid network with non-recurrent traffic state (traffic incident) with the varying key parameters (traffic flow, communication radio range, and penetration ratio), employing the off-the-shelf microscopic simulation model (VISSIM) under the ideal vehicle communication environment. Simulation outputs indicate that as the three key parameters are increased more participating vehicles are involved for traffic data propagation in the less communication groups at the faster data dissemination speed. Also, participating vehicles saved their travel time by dynamically updating the up-to-date traffic states and searching for the new route. Focusing on the travel time difference of (instant) re-routing vehicles, lower traffic flow cases saved more time than higher traffic flow ones. This is because a relatively small number of vehicles in 300vph case re-route during the most system-efficient time period (the early time of the traffic incident) but more vehicles in 514vph case re-route during less system-efficient time period, even after the incident is resolved. Also, normally re-routings on the network-entering links saved more travel time than any other places inside the network except the case where the direct effect of traffic incident triggers vehicle re-routings during the effective incident time period and the location and direction of the incident link determines the spatial distribution of re-routing vehicles.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.

Macromineral intake in non-alcoholic beverages for children and adolescents: Using the Fourth Korea National Health and Nutrition Examination Survey (KNHANES IV, 2007-2009) (어린이와 청소년의 비알콜성음료 섭취에 따른 다량무기질 섭취량 평가: 제 4기 국민건강영양조사 자료를 활용하여)

  • Kim, Sung Dan;Moon, Hyun-Kyung;Park, Ju Sung;Lee, Yong Chul;Shin, Gi Young;Jo, Han Bin;Kim, Bog Soon;Kim, Jung Hun;Chae, Young Zoo
    • Journal of Nutrition and Health
    • /
    • v.46 no.1
    • /
    • pp.50-60
    • /
    • 2013
  • The aims of this study were to estimate daily intake of macrominerals from beverages, liquid teas, and liquid coffees and to evaluate their potential health risks for Korean children and adolescents (1-to 19 years old). Assessment of dietary intake was conducted using the actual level of sodium, calcium, phosphorus, potassium, and magnesium in non-alcoholic beverages and (207 beverages, 19 liquid teas, and 24 liquid coffees) the food consumption amount drawn from "The Fourth Korea National Health and Nutrition Examination Survey (2007-2009)". To estimate the dietary intake of non-alcoholic beverages, 6,082 children and adolescents (Scenario I) were compared with 1,704 non-alcoholic beverage consumption subjects among them (Scenario II). Calculation of the estimated daily intake of macrominerals was based on point estimates and probabilistic estimates. The values of probabilistic macromineral intake, which is a Monte-Carlo approach considering probabilistic density functions of variables, were presented using the probabilistic model. The level of safety for macrominerals was evaluated by comparison with population nutrient intake goal (Goal, 2.0 g/day) for sodium, tolerable upper intake level (UL) for calcium (2,500 mg/day) and phosphorus (3,000-3,500 mg/day) set by the Korean Nutrition Society (Dietary Reference Intakes for Koreans, KDRI). For total children and adolescents (Scenario I), mean daily intake of sodium, calcium, phosphorus, potassium, and magnesium estimated by probabilistic estimates using Monte Carlo simulation was, respectively, 7.93, 10.92, 6.73, 23.41, and 1.11, and 95th percentile daily intake of those was, respectively, 28.02, 44.86, 27.43, 98.14, and 3.87 mg/day. For consumers-only (Scenario II), mean daily intake of sodium, calcium, phosphorus, potassium, and magnesium estimated by probabilistic estimates using Monte Carlo simulation was, respectively, 19.10, 25.77, 15.83, 56.56, and 2.86 mg/day, and 95th percentile daily intake of those was, respectively, 62.67, 101.95, 62.09, 227.92, and 8.67 mg/day. For Scenarios I II, sodium, calcium, and phosphorus did not have a mean an 95th percentile intake that met or exceeded the 5% of Goal and UL.