• 제목/요약/키워드: simulated fuel

Search Result 591, Processing Time 0.025 seconds

Global Carbon Budget Study using Global Carbon Cycle Model (탄소순환모델을 이용한 지구 규모의 탄소 수지 연구)

  • Kwon, O-Yul;Jung, Jaehyung
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1169-1178
    • /
    • 2018
  • Two man-made carbon emissions, fossil fuel emissions and land use emissions, have been perturbing naturally occurring global carbon cycle. These emitted carbons will eventually be deposited into the atmosphere, the terrestrial biosphere, the soil, and the ocean. In this study, Simple Global Carbon Model (SGCM) was used to simulate global carbon cycle and to estimate global carbon budget. For the model input, fossil fuel emissions and land use emissions were taken from the literature. Unlike fossil fuel use, land use emissions were highly uncertain. Therefore land use emission inputs were adjusted within an uncertainty range suggested in the literature. Simulated atmospheric $CO_2$ concentrations were well fitted to observations with a standard error of 0.06 ppm. Moreover, simulated carbon budgets in the ocean and terrestrial biosphere were shown to be reasonable compared to the literature values, which have considerable uncertainties. Simulation results show that with increasing fossil fuel emissions, the ratios of carbon partitioning to the atmosphere and the terrestrial biosphere have increased from 42% and 24% in the year 1958 to 50% and 30% in the year 2016 respectively, while that to the ocean has decreased from 34% in the year 1958 to 20% in the year 2016. This finding indicates that if the current emission trend continues, the atmospheric carbon partitioning ratio might be continuously increasing and thereby the atmospheric $CO_2$ concentrations might be increasing much faster. Among the total emissions of 399 gigatons of carbon (GtC) from fossil fuel use and land use during the simulation period (between 1960 and 2016), 189 GtC were reallocated to the atmosphere (47%), 107 GtC to the terrestrial biosphere (27%), and 103GtC to the ocean (26%). The net terrestrial biospheric carbon accumulation (terrestrial biospheric allocations minus land use emissions) showed positive 46 GtC. In other words, the terrestrial biosphere has been accumulating carbon, although land use emission has been depleting carbon in the terrestrial biosphere.

Implementation of Fuel Cell Simulator for Ship Using the Programmable Power Supply (전력공급장치를 이용한 선박용 연료전지 시뮬레이터의 구현)

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1117-1122
    • /
    • 2012
  • In order to study to apply the fuel cell, the study about the power system design and the load control is needed. However, to experiment the fuel cell need the auxiliary device and the complex control technology. For this reason the simulator is needed and such study is in progress actively. In this paper, the PEMFC (Polymer Electrolyte Membrane Fuel Cell) that is applied the vehicle, the small sized ship was simulated based on LabVIEW. The characteristic of fuel cell simulator was implemented based on a simulation data using the programmable power supply. The I-V characteristic according to various factors and the polarization curve of fuel cell were analysed.

Operation Scheme to Regulate the Active Power Output and to Improve the Forecasting of Output Range in Wind Turbine and Fuel-Cell Hybrid System (출력변동 저감 및 출력범위 예측 향상을 위한 풍력-연료전지 하이브리드 시스템의 운영방법)

  • Kim, Yun-Seong;Moon, Dae-Seong;Won, Dong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.3
    • /
    • pp.531-538
    • /
    • 2009
  • The paper deals with an operation scheme to improve the forecasting of output range and to regulate the active power output of the hybrid system consisting of a doubly fed induction generator (DFIG) and a fuel-cell. The power output of the wind turbine fluctuates as the wind speed varies and the slip power between the rotor circuit and power converter varies as the rotor speed change. The power fluctuation of a DFIG makes its operation difficult when a DFIG is connected to grid. A fuel cell system can be individually operated and adjusted output power, hence the wind turbine and fuel cell hybrid system can overcome power fluctuation by using a fuel-cell power control. In this paper, a fuel-cell is performed to regulate the active power output in comparison with the regulated active power output of a DFIG. And it also improves the forecasting of output range. Based on PSCAD/EMTDC tools, a DFIG and a proton exchange membrane fuel cell(PEMFC) is simulated and the dynamics of the output power in hybrid system are investigated.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.

Application of the Digital Mockup to Preliminary Analysis the Remote Maintainability of ACP

  • Song, Tai-Gil;Kim, Sung-Hyun;Park, Byung-Suk;Yoon, Ji-Sup;Lee, Sang-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.363-366
    • /
    • 2004
  • KAERI is developing the Advanced Spent Fuel Conditioning Process (ACP) as a pre-disposal treatment process for spent fuel. In this process, the management process must operate in intense radiation fields as well as in a high temperature. Therefore, remote maintenance has played a significant role in this process. Hence suitable remote handling and maintenance technology needs to be developed along with the design of the process concepts. To do this, we developed the digital mockup for the ACP. The digital mockup provides the capability of verifying the remote operability of the process without fabrication of the process equipment. In other words, by applying virtual reality to the remote maintenance operation, a remote operation task can be simulated in the digital mockup. Through utilizing this graphic simulation in this digital mockup, general guidelines can be established for designing equipment intended for remote handling and maintenance. Also, the designer of the equipment that must be remotely maintained should ensure that there is adequate access to the process equipment. The graphic simulator will substantially reduce the cost of the develo363pment of the remote handling and maintenance procedure as well as the process equipment.

  • PDF

Development of Economic Prediction Model for Internal Combustion Engine by Dual Fuel Generation (내연기관엔진의 가스혼소발전 경제성 예측모델 개발)

  • HUR, KWANG-BEOM;JANG, HYUCK-JUN;LEE, HYEONG-WON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.380-386
    • /
    • 2020
  • This paper represents an analysis of the economic impact of firing natural gas/diesel and natural gas/by-product oil mixtures in diesel engine power plants. The objects of analysis is a power plant with electricity generation capacity (300 kW). Using performance data of original diesel engines, the fuel consumption characteristics of the duel fuel engines were simulated. Then, economic assessment was carried out using the performance data and the net present value method. A special focus was given to the evaluation of fuel cost saving when firing natural gas/diesel and natural gas/by-product oil mixtures instead of the pure diesel firing case. Analyses were performed by assuming fuel price changes in the market as well as by using current prices. The analysis results showed that co-firing of natural gas/diesel and natural gas/by-product oil would provide considerable fuel cost saving, leading to meaningful economic benefits.

Critical Velocity of Fluidelastic Vibration in a Nuclear Fuel Bundle

  • Kim, Sang-Nyung;Jung, Sung-Yup
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.816-822
    • /
    • 2000
  • In the core of the nuclear power plant of PWR, several cases of fuel failure by unknown causes have been experienced for various fuel types. From the common features of the failure pattern, failure lead time, flow conditions, and flow induced vibration characteristics in nuclear fuel bundles, it is deduced that the fretting wear failure of the fuel rod at the spacer grid position is due to the fluidelastic vibration. In the past, fluidelastic vibration was simulated by quasi -static semi-analytical model, so called the static model, which could not account for the interaction between the rods within a bundle. To overcome this defect and to provide for more flexibilities applicable to the fuel bundle, Tanaka's unsteady model was modified to accomodate the geometrical differences and governing parameter changes during the operations such as the number of rods, pitch to diameter ratio (P/D), spring force, damping coefficient, etc. The critical velocity was calculated by solving the governing equations with the MATLAB code. A comparison between the estimated critical velocity and the test result shows a good agreement. Finally, the level of decrease of the critical velocity due to the reduction in the spring force and reduced damping coefficient due to the radiation exposure is also estimated.

  • PDF

Validation Calculations of Simulated Shipping Container Experiments with Steel, Boral, and Cadmium Plates

  • Kim, Soon-Sam;Lee, Sang-Hee
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.33-38
    • /
    • 1997
  • Criticality experiments with fixed neutron poison plates for water moderated and reflected low enriched(2.35 and 4.31 wt%) UO$_2$fuel rod clusters were evaluated to validate calculation techniques employed in analyzing fuel shipping and storage systems having steel, boral, or cadmium shield. Measurements were obtained for both the 2.35 wt% and the 4.31 wt% enriched rods in square pitched, water flooded lattices. The critical experiments with the 2.35 wt% enriched rods consists of three 20$\chi$ 16 or 20$\chi$ 17 fuel cluster. Critical separation were used in the experiments with the 4.31 wt% enriched fuel rods. In the experiments, the poison plates were placed on both sides of the centrally located fuel cluster. Critical separation between the three sub-critical fuel clusters were then measured for varying plate thicknesses and distances of the plates to the center fuel cluster. Calculations were performed for thirty eight critical configuration using KENO-V. a and MCNP. All of the results were within 1.23% in $\Delta$k when individually compared with the critical value of 1.0. Discrepancies of the code results are probably due to uncertainties in experiments and/or analytical modeling experiments. In general, MCNP predictions were observed to be in best agreement with the experiments.

  • PDF

Evaluation of Ductility During Reactivity Initiated Accident for Zirconium Cladding using Ring Tension Test (링 인장시험을 이용한 지르코늄 피복관의 반응도 사고(RIA) 시 연성 평가)

  • Kim Jun Hwan;Lee Myoung Ho;Choi Byoung Kwon;Bang Je Geon;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.126-133
    • /
    • 2005
  • Mechanical properties of zirconium cladding were evaluated by ring tension test to simulate Reactivity-Initiated Accident (RIA) at high burnup situation as an out-reactor test. Zircaloy-4 cladding was hydrided up to 1000 ppm as well as oxidized up to $100\;{\mu}m$ to simulate high-burnup situation. After simulated high-burnup treatment, ring tension test was carried out from 0.01 to 1/sec to correlate with actual RIA event. The results showed that ductility and circumferential toughness decreased with the hydrogen content and oxide thickness. Hydride generated inside cladding acted as brittle failure. Oxygen influenced cladding tube by the reduction of load bearing area, oxygen embrittlement, and thermal aging. Correlation between in-reactor RIA parameter like fuel enthalpy and out-reactor toughness was performed and showed a reasonable result.

Study on Sensitivities and Fire Area Errors in WRF-Fire Simulation to Different Resolution Data Set of Fuel and Terrain, and Surface Wind (WRF-Fire 산불 연료 · 지형자료 해상도와 지상바람의 연소면적 모의민감도 및 오차 분석연구)

  • Seong, Ji-Hye;Han, Sang-Ok;Jeong, Jong-Hyeok;Kim, Ki-Hoon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.485-500
    • /
    • 2013
  • This study conducted WRF-Fire simulations in order to investigate sensitivities of the resolution of fire fuel and terrain data sets, and the surface wind to simulated fire area. The sensitivity simulations were consisted of 8 different WRF-Fire runs, each of which used different combination of data sets of fire fuel and terrain with different resolution. From the results it was turned out that the surface wind was most sensitive. The next was fire fuel and then fire terrain. Unfortunately, every run produced too much fire area. In other words no simulations succeeded in simulating such proper fire area so as for the WRF-Fire to be used realistically. It was verified that the errors of fire area from each runs were contributed by 41%, 53%, and 6% from surface wind, fire fuel, and fire terrain, respectively. Finally this study suggested that the selection of Anderson fuel category in the area of interest seemed to be very critical in the performance of WRF-Fire simulations.