• Title/Summary/Keyword: simulated canal

Search Result 92, Processing Time 0.019 seconds

The thickness of the soft soil layer and canal-side road failure: A case study in Phra Nakhon Si Ayutthaya province, Thailand

  • Salisa Chaiyaput;Taweephong Suksawat;Lindung Zalbuin Mase;Motohiro Sugiyama;Jiratchaya Ayawanna
    • Geomechanics and Engineering
    • /
    • v.35 no.5
    • /
    • pp.511-523
    • /
    • 2023
  • Canal-side roads frequently collapse due to an unexpectedly greater soft-clay thickness with a rapid drawdown situation. This causes annually increased repair and reconstruction costs. This paper aims to explore the effect of soft-clay thickness on the failure in the canal-side road in the case study of Phra Nakhon Si Ayutthaya rural road no. 1043 (AY. 1043). Before the actual construction, a field vane shear test was performed to determine the undrained shear strength and identify the thickness of the soft clay at the AY. 1043 area. After establishing the usability of AY. 1043, the resistivity survey method was used to evaluate the thickness of the soft clay layer at the failure zone. The screw driving sounding test was used to evaluate the undrained shear strength for the road structure with a medium-stiff clay layer at the failure zone for applying to the numerical model. This model was simulated to confirm the effect of soft-clay thickness on the failure of the canal-side road. The monitoring and testing results showed the tendency of rapid drawdown failure when the canal-side road was located on > 9 m thick of soft clay with a sensitivity > 4.5. The result indicates that the combination of resistivity survey and field vane shear test can be successfully used to inspect the soft-clay thickness and sensitivity before construction. The preliminary design for preventing failure or improving the stability of the canal-side road should be considered before construction under the critical thickness and sensitivity values of the soft clay.

APICAL FITNESS OF NON-STANDARDIZED GUTTA-PERCHA CONES IN SIMULATED ROOT CANALS PREPARED WITH ROTARY ROOT CANAL INSTRUMENTS (전동화일로 형성된 근관에서 비표준화 Gutta-percha Cone의 적합성)

  • Kwon, O-Sang;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.390-398
    • /
    • 2000
  • The purpose of this study was to evaluate the apical fitness of non-standardized gutta-percha cones in root canals prepared with rotary Ni-Ti root canal instruments of various tapers and apical tip sizes. Simulated sixty curved root canals of plastic blocks were prepared with crown-down technique using rotary root canal instruments of Maillefer ProFile$^{(R)}$ .04 and .06 taper (Maillefer Instrument SA, Switzerland). Specimens were divided into six groups and prepared as follows: Group 1, prepared up to size 25 of .04 taper ; Group 2, prepared up to size 30 of .04 taper ; Group 3, prepared up to size 35 of .04 taper ; Group 4, prepared up to size 25 of .06 taper ; Group 5, prepared up to size 30 of .06 taper ; Group 6 ; prepared up to size 35 of .06 taper. After cutting off the coronal portion of plastic, blocks perpendicular to the long axis of the canal with the use of a diamond saw, apical 5mm of canal space was analyzed. Prepared apical canal spaces were duplicated using rubber base impression material to evaluate two dimensional total area of apical canal space. Various sized gutta-percha cones were applied in the 5mm-apical canal space, which were size 25, size 30 and size 35 standardized gutta-percha cone, Diadent Dia-Pro ISO-.04$^{TM}$ and .06$^{TM}$(Diadent, Korea), and medium-fine (MF), fine (F), fine-medium (FM) and medium (M) sized non-standardized gutta-percha cones (Diadent, Korea). Coronal excess gutta-percha were cut off with a sharp blade. Photographs of impressed apical canal spaces and gutta-percha cones were taken with a CCD camera under a stereomicroscope and stored in a computer. Areas of the total canal space and gutta-percha cones were calculated using a digitalized image analysing program, CompuScope (Sungjin Multimedia Co., Korea). Ratio of apical fitness was obtained by calculating the area of gutta-percha cone to the total area of the canal space. The data were analysed statistically using One-way Analysis of Variance and Duncan's Multiple Range Test. The results were as follows: 1. In canals prepared up to size 25 ProFile$^{(R)}$ of .04 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 25 standardized ones (p<0.05). 2. In canals prepared up to size 30 ProFile$^{(R)}$ of .04 taper, non-standardized F cones occupied significantly more canal space than Dia-Pro ISO-.04$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized MF cones occupied more canal space than size 30 standardized ones (p<0.05). 3. In canals prepared up to size 35 ProFile$^{(R)}$ of .04 taper, there was no significant difference in canal space occupation among non-standardized MF and F, size 35 standardized, and Dia-Pro ISO-.04$^{TM}$ cones (p>0.05). 4. In canals prepared up to size 25 ProFile$^{(R)}$ of .06 taper, non-standardized MF and F cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$, or size 25 standardized ones (p<0.05), and Dia-Pro ISO-.06$^{TM}$, cones occupied significantly more space than size 25 standardized ones (p<0.05). 5. In canals prepared up to size 30 ProFile$^{(R)}$ of .06 taper, non-standardized FM cones occupied significantly more canal space than Dia-Pro ISO-.06$^{TM}$ or size 30 standardized ones (p<0.05), and non-standardized F cones occupied significantly more canal space than size 30 standardized ones (p<0.05). 6. In canals prepared up to size 35 ProFile$^{(R)}$ of .06 taper, non-standardized M and FM, Dia-Pro ISO-.06$^{TM}$ occupied significantly more canal space than size 35 standardized ones (p<0.05). In summary, in both canals prepared with .04 or .06 taper ProFile$^{(R)}$, non-standardized cones showed better fitness than Dia-Pro ISO$^{TM}$ or standardized ones, which was more characteristic in smaller canals.

  • PDF

A COMPARISON OF SHAPING ABILITY OF THE THREE ProTaper® INSTRUMENTATION TECHNIQUES IN SIMULATED CANALS (ProTaper®의 세 가지 사용방식에 따른 성형능력 비교)

  • Kim, So-Youn;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.1
    • /
    • pp.58-65
    • /
    • 2005
  • The purpose of this study was to compare the shaping ability of the three $ProTaper^{(R)}$ instrumentation techniques in simulated canals. Thirty resin blocks were divided into 3 groups with 10 canals each. Each group was instrumented with manual $ProTaper^{(R)}$ (Group M), rotary $ProTaper^{(R)}$ (Group R), and hybrid technique (Group H). Canal preparation time was recorded. The images of pre- and post-instrumented root canals were scanned and superimposed. The amounts of canal deviation, total canal width, inner canal width, outer canal width and centering ratio were measured at apical 1, 2, 3, 4, 5 and 6 mm levels 1. Canal preparation time was the shortest in R group (p < 0.05). 2. The amounts of total canal width in R group was generally larger than the other groups, but no significant differences were observed except at the 1, 3 mm levels (p > 0.05) .3. The amounts of inner canal width in R group was larger than M group at the 1 mm level and H group was larger than R group at the 6 mm level (p < 0.05). The amounts of outer canal width in R group was larger than H group only at the 1 mm level (p < 0.05). 4. The direction of canal deviation in H, R group at the 1, 2, 3 mm levels was outward and that in M group at the 1, 2 mm levels was inward. The amounts of canal deviation in H group was larger than R group at the 6 mm level (p < 0.05). 5. The amounts of centering ratio in H group was larger than R group at the 6 mm level (p < 0.05).

Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

  • Ha, Jung-Hong;Park, Sang-Shin
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.4
    • /
    • pp.215-219
    • /
    • 2012
  • Objectives: The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation. Materials and Methods: Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer) were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer), #15 NiTi K-file NITIFLEX (Dentsply Maillefer), modified #16 Path File (equivalent to #18), and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer) at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test. Results: Group 4 showed lowest screw-in effect ($2.796{\pm}0.134$) among the groups (p < 0.05). Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus. Conclusions: The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.

A COMPARISON OF THERMOPLASTICIZED INJECIABLE GUTTA-PERCHA TECHNIQUES IN RIBBON-SHAPED CANALS : ADAPTATION TO CANAL WALLS (리본 형태의 근관에서 열연화주입법의 근관벽에 대한 적합도에 관한 연구)

  • Hwang, Hyun-Sook;Cho, Kyung-Mo;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.4
    • /
    • pp.411-420
    • /
    • 2002
  • The aim of this study is to compare the adaptability of thermoplasticized injectable gutta-percha technique to the canal walls in ribbon-shaped canals. Thirty resin models simulated ribbon-shape canals were instrumented to #40 using .06 taper Profile systems. Three groups of each 10 resin models were obturated by the lateral condensation technique(LC) and the two thermoplasticized injectable gutta-percha technique; Ultrafil Endoset+Obtura II(EO) and Ultrafil Firmset(UF), respectively. After resin model were kept at room temperature for 4 days, they were resected horizontally with micro-tome at 1, 2, 3, 4 and 5mm levels from apex. At each levels. image of resected surface were taken using CCD camera under a stereomicroscope at $\times$40 magnification and stored. Ratio of the area of gutta-percha was obtained by calculating area of gutta-percha cone to the total area of canal using digitized image-ana-Iyzing program. The data were collected then analyzed statistically using One-way ANOVA. The results were as follows. 1 At 1mm levels, there was no statistically significant difference in the mean ratio of gutta-percha among the groups. 2. At 2mm level, EO showed the highest mean ratio of gutta-percha (p<0.05) and there was no significant difference between LC and UF. 3. At 3, 4, 5mm levels, EO and UF had significantly greater mean ratio of gutta-percha than LC(p<0.05) and there was no significant difference between EO and UF. In conclusion, the thermoplasticized injectable gutta-percha techniques demonstrated relatively favorable adaptability to canal walls than lateral condensation technique in ribbon-shaped canals except for 1mm level.

Accuracy of Root ZX in teeth with simulated root perforation in the presence of gel or liquid type endodontic irrigant

  • Shin, Hyeong-Soon;Yang, Won-Kyung;Kim, Mi-Ri;Ko, Hyun-Jung;Cho, Kyung-Mo;Park, Se-Hee;Kim, Jin-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.149-154
    • /
    • 2012
  • Objectives: To evaluate the accuracy of the Root ZX in teeth with simulated root perforation in the presence of gel or liquid type endodontic irrigants, such as saline, 5.25% sodium hypochlorite (NaOCl), 2% chlorhexidine liquid, 2% chlorhexidine gel, and RC-Prep, and also to determine the electrical conductivities of these endodontic irrigants. Materials and Methods: A root perforation was simulated on twenty freshly extracted teeth by means of a small perforation made on the proximal surface of the root at 4 mm from the anatomic apex. Root ZX was used to locate root perforation and measure the electronic working lengths. The results obtained were compared with the actual working length (AWL) and the actual location of perforations (AP), allowing tolerances of 0.5 or 1.0 mm. Measurements within these limits were considered as acceptable. Chi-square test or the Fisher's exact test was used to evaluate significance. Electrical conductivities of each irrigant were also measured with an electrical conductivity tester. Results: The accuracies of the Root ZX in perforated teeth were significantly different between liquid types (saline, NaOCl) and gel types (chlorhexidine gel, RC-Prep). The accuracies of electronic working lengths in perforated teeth were higher in gel types than in liquid types. The accuracy in locating root perforation was higher in liquid types than gel types. 5.25% NaOCl had the highest electrical conductivity, whereas 2% chlorhexidine gel and RC-Prep gel had the lowest electrical conductivities among the five irrigants. Conclusions: Different canal irrigants with different electrical conductivities may affect the accuracy of the Root ZX in perforated teeth.

A comparison of thermoplasticized injectable gutta-percha technique in ribbon-shaped canals: Adaptation to canal walls

  • Hwang, Hyun-Sook;Cho, Kyuong-Mo;Kim, Jin-Woo
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.587.1-587
    • /
    • 2001
  • The aim of this study is to compare the adaptability of thermoplasticized injectable gutta-percha technique to the canal walls in ribbon-shaped canals. Thirty resin models simulated ribbon-shaped canals were instrumented to #40 using. 06 taper Profile systems. Three groups of 10 resin models were obturated by the lateral condensation technique(LC) and the two thermoplasticized injectable gutta-percha technique; Ultrafil Endoset+Obtura II(EO) and Ultrafil Firmset(UF), respectively.(omitted)

  • PDF

A COMPARISON OF THE SHAPING ABILITY OF FOUR ROTARY NICKEL-TITANIUM FILES IN SIMULATED ROOT CANALS (엔진구동형 NiTi 파일의 근관성형효과 비교)

  • Kim, Bo-Hye;Choi, Kyoung-Kyu;Park, Sang-Hyuk;Choi, Gi-Woon
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.88-95
    • /
    • 2010
  • The purpose of this study was to compare the root canal shaping ability of 4 rotary NiTi instruments in simulated root canals. For the preparation of thirty two curved root canals, Mtwo instruments using "single length"technique, and Profile, ProTaper Universal, and K3 using crown-down technique (N = 8) were used. All canal samples were prepared by reaching an apical canal size of #30. Pre- and post-instrumentation digital images were recorded and an assessment of canal shape was determined using a computer image analysis program SigmaScan Pro (Systat Software Inc., San Jose, CA, USA). The changes of the dimension of inner walls of canals, (2) the changes of the dimension of outer walls of canals, and (3) the centering ratio were measured at 7 measuring points, and then data were statistically analyzed using one-way ANOVA and Duncan's test. The results were as below; 1. The root canal shaping ability of Profile was significantly faster than that of other rotary NiTi instruments (p < 0.05). 2. The deformation and fracture of all instruments used for this study were not experienced. 3. In the degree of changes of the dimension of inner walls of canals, Profile demonstrated the lowest changes of the dimension of inner walls of canals except at the measuring points of the 1 and 2 mm (p < 0.05). However, the ProTaper Universal showed the highest changes of the dimension of inner walls of canals at all measuring points (p < 0.05). 4. In the degree of changes of the dimension of outer walls of canals, Mtwo demonstrated the lowest changse of the dimension of outer walls of canals except at the measuring point of the 1 mm (p < 0.05). However, Profile exhibited the highest changes of the dimension of outer walls of canals at the measuring points of 3 and 4 mm and ProTaper Universal and K3 showed the largest changes of the dimension of outer walls of canals at the measuring points of 1, 2, 6, and 7 mm (p < 0.05). 5. In degree of centering ratio, Profile demonstrated the least centering ratio comparing with the centering ratio shown by other NiTi instruments at the measuring points of 1, 4, 5, and 6 mm. Results suggest that in the coronal part of canal preparation, active cutting files such as ProTaper Universal may efficiently flare the canal orifice and form a better taper, and in the apical part of the canal, files which have a better centering ability such as Profile may maintain the original canal curvature and reduce the shaping time.

COMPARISON OF SCREW-IN EFFECT FOR SEVERAL NICKEL-TITANIUM ROTARY INSTRUMENTS IN SIMULATED RESIN ROOT CANAL (모형 레진 근관에서 수종의 전동 니켈-티타늄 파일에 대한 screw-in effect 비교)

  • Ha, Jung-Hong;Jin, Myoung-Uk;Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.4
    • /
    • pp.267-272
    • /
    • 2010
  • Screw-in effect is one of the unintended phenomena that occurs during the root canal preparation with nickel-titanium rotary files. The aim of this study was to compare the screw-in effect among various nickel-titanium rotary file systems. Six different nickel-titanium rotary instruments (ISO 20/.06 taper) were used: $K3^{TM}$ (SybronEndo, Glendora, CA, USA), $M_{two}$ (VDW GmbH, Munchen, Germany), NRT with safe-tip and with active tip (Mani Inc., Shioya-gun, Japan), ProFile$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland) and ProTaper$^{(R)}$ (Dentsply-Maillefer, Ballaigues, Switzerland). For ProTaper$^{(R)}$, S2 was selected because it has size 20. Root canal instrumentations were done in sixty simulated single-curved resin root canals with a rotational speed of 300 rpm and single pecking motion. A special device was designed to measure the force of screw-in effect. A dynamometer of the device recorded the screw-in force during simulated canal preparation and the recorded data was stored in a computer with designed software (LCV-USE-VS, Lorenz Messtechnik GmbH, Alfdorf, Germany). The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. P value of less than 0.05 was regarded significant. ProTaper$^{(R)}$ produced significantly more screw-in effects than any other instruments in the study (p < 0.001). $K3^{TM}$ produced significantly more screw-in effects than $M_{two}$, and ProFile$^{(R)}$ (p < 0.001). There was no significant difference among $M_{two}$, NRT, and ProFile$^{(R)}$ (p > 0.05), and between NRT with active tip and NRT with safe one neither (p > 0.05). From the result of the present study, it was concluded, therefore, that there seems significant differences of screw-in effect among the tested nickel-titanium rotary instruments. The radial lands and rake angle of nickel-titanium rotary instrument might be the cause of the difference.

Influence of taper on the screw-in effect of nickel-titanium rotary files in simulated resin root canal (모형 레진근관에서 니켈-티타늄 전동 파일의 경사도가 screw-in effect에 미치는 영향)

  • Sung, Hye-Jin;Ha, Jung-Hong;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.380-386
    • /
    • 2010
  • Objectives: The introduction of nickel-titanium alloy endodontic instruments has greatly simplified shaping the root canal systems. However, these new instruments have several unexpected disadvantages. One of these is tendency to screw into the canal. In this study, the influence of taper on the screw-in effect of the Ni-Ti rotary instrument were evaluated. Materials and Methods: A total of 20 simulated root canals with an S-shaped curvature in clear resin blocks were divided into two groups. ProFile .02, .04, .06 (Dentsply-Maillefer) and GT rotary files .08, .10, .12 (Dentsply) were used in Profile group, and K3 .04, .06, .08, .10, and .12 (SybronEndo, Glendora) were used in K3 group. Files were used with a single pecking motion at a constant speed of 300 rpm. A special device was made to measure the force of screw-in effect. A dynamometer of the device recorded the screwin force during simulated canal preparation and the recorded data was stored in computer with designed software. The data were subjected to one-way ANOVA and Tukey's multiple range test for post-hoc test. p value of less than 0.05 was regarded significant. Results: The more tapered instruments generated more screw-in forces in Profile group (p < 0.05). In K3 group, 0.08, 0.10. and 0.12 tapered instruments showed more screw-in force than 0.04 tapered one, and 0.08 and 0.12 tapered instruments showed more screw-in force than 0.06 tapered one (p < 0.05). Conclusions: The more tapered instruments seems to produce more screw-in force. To avoid this screw-in force during instrumentation, more attention may be needed when using more tapered instruments.