• 제목/요약/키워드: simulated body fluid

검색결과 123건 처리시간 0.028초

Biomimetic Deposition of Apatite on Zr-1Nb and Ti-6Al-4V

  • Kim, J.;Choi, Y.C.;Kim, H.S.;Hong, S.I.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1089-1090
    • /
    • 2006
  • Biomimetic apatite deposition behaviors on Zr-1Nb and Ti-6Al-4V plate with various surface conditions were examined. Both alloys were polished with abrasive papers to have different roughness and some of them were treated in NaOH before exposition in simulated body fluid. NaOH treatment was found to enhance the deposition rate of apatite on Ti-6Al-4V significantly. On the other hand, the deposition rate of Zr-1Nb was not influenced by NaOH treatment. Without NaOH treatment, the polished Zr-1Nb with abrasive paper was found to induce more apatite nucleation than the polished Zr-6Al-4V.

  • PDF

거리 장 함수를 이용한 얇은 막과 유체의 예측 기반 상호작용 시뮬레이션 (Interaction of Fluid and Thin Shell Structure with Signed Distance Fields)

  • 김보람;신승호;임재호;김창헌
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-24
    • /
    • 2011
  • 컴퓨터 그래픽스에서 입자 기반의 유체와 강체 모델과의 상호작용을 정확히 시뮬레이션 하는 것은 중요한 문제이다. 일반적으로 이러한 상호작용은 시간에 대해 연속적이지 않은 환경에서 시뮬레이션 되어왔다. 이로 인해 상호작용을 시뮬레이션하는 데 있어서 많은 오차가 있었다. 본 논문에서는 이러한 불연속적인 환경에서 발생하는 오차를 해결하는 방법을 제안한다. 강체 모델의 거리함수장인 음함수가 공간에 따라 연속적으로 증가하는 특성을 이용하여 입자 충돌을 예측하는 예측 기반 충돌 처리 기법을 제안한다. 유체입자와 강체 모델이 충돌할 때 정확한 충돌시점과 충돌 지점을 계산한다. 이를 통하여 유체와 강체가 실제 환경인 연속적인 환경에서와 같이 상호작용하도록 시뮬레이션 하였다.

Effect of ethyl alcohol aging on the apatite formation of a low-modulus Ti-7.5Mo alloy treated with aqueous NaOH

  • Ho, Wen-Fu;Tsou, Hsi-Kai;Wu, Shih-Ching;Hsu, Shih-Kuang;Chuang, Shao-Hsuan;Hsu, Hsueh-Chuan
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제1권1호
    • /
    • pp.51-62
    • /
    • 2014
  • The purpose of this experiment was to evaluate the apatite-formation abilities of low-modulus Ti-7.5Mo substrates treated with NaOH aqueous solutions and subsequent ethyl alcohol aging before soaking them in simulated body fluid. Specimens of Ti-7.5Mo were initially treated with 5 M NaOH at $60^{\circ}C$ for 24 h, resulting in the formation of a porous network structure composed of sodium hydrogen titanate. Afterwards, the specimens were aged in ethyl alcohol at $60^{\circ}C$ for 5 or 10 min, and subsequently immersed in simulated body fluid at $37^{\circ}C$ for 3, 7 and 14 days. Ethyl alcohol aging significantly increased the apatite-forming abilities of Ti-7.5Mo. The amount of apatite deposited on the Ti-7.5Mo after NaOH treatment and subsequent ethyl alcohol aging was much greater, especially after the Ti-7.5Mo specimens were aged for 5 min. Due to its excellent combination of bioactivity, low elastic modulus and low processing costs, the Ti-7.5Mo treated with NaOH aqueous solutions and subsequently aged in ethyl alcohol has promising heavy load-bearing applications.

수산화아파타이트 분말의 열처리가 유사생체용액 내 용해거동에 미치는 영향 (Influence of thermal treatment on the dissolution of hydroxyapatite powders in simulated body fluid)

  • 송대성;서동석;이종국
    • 한국결정성장학회지
    • /
    • 제15권2호
    • /
    • pp.79-85
    • /
    • 2005
  • 수산화아파타이트 상용분말을 $1000{\sim}1350^{\circ}C$ 온도범위에서 2시간 동안 공기 중에서 하소한 다음, pH 7.4인 유사 생체용액에 넣고 $37^{\circ}C$에서 3일 또는 7일간 침적실험을 행하였다. 열분해에 따른 수산화아파타이트 분말의 용해 거동은 XRD, FTIR, TEM을 이용해 비교분석 하였다. $1200^{\circ}C$에서 하소된 수산화아파타이트 분말은 격자 내 $OH^-$ 이온들의 탈수로 인하여 OHAP(oxyhydroxyapatite, ($Ca_{10}(PO_4)_6O_x(OH)_{2-2x}$)로 전이하였다. $1350^{\circ}C$에서 수산화아파타이트 분말 일부가 ${\alpha}-TCP$(${\alpha}-tricalcium$ phosphate)와 TTCP (tetracalcium phosphate)로 열분해 되었다. 수산화아파타이트 분말의 열분해로 인해 생성된 ${\alpha}-TCP$, TTCP 및 비화학양론조성의 OHAP 조성들이 수산화아파타이트 분말의 표면용해를 진전시켰다.

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권1호
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

중량 특성이 다른 2종류 운동체의 수중거동 해석 연구 (A Study on the Analysis of Underwater Behaviors of Two Bodies Having Different Weight Characteristics)

  • 안진형;정찬희
    • 한국시뮬레이션학회논문지
    • /
    • 제21권1호
    • /
    • pp.35-43
    • /
    • 2012
  • 본 연구에서는 수중에서 사출되는 양성부력체와 음성부력체의 수중거동을 사출시험 및 시뮬레이션을 통하여 비교하였다. 다양한 형상을 갖는 음성부력체의 동유체력 계수는 전산유체역학(CFD: Computatioanl Fluid Dynamics) 기법을 이용하여 계산하였으며, CFD에 의해 계산될 수 없는 계수는 기본형과 같은 값을 적용하였다. 종동요각의 시험 값은 시뮬레이션 값보다 훨씬 크게 나타났는데, 이는 추종공기 효과로 추정하였으며, 이 현상을 반영하여 외력 모델링을 수정함으로써 더욱 정확한 시뮬레이션이 가능하였다. 양성부력체와 음성부력체의 수중거동은 같은 사출 조건에서 다소 차이를 보이지만, 운용의 관점에서는 별다른 문제가 없는 것으로 판단하였다.

동유체력 계산을 이용한 수중운동체의 횡동요 계수 변화 예측 (ESTIMATION OF ROLL COEFFICIENT OF UNDERWATER VEHICLE USING A CALCULATION OF HYDRODYNAMIC FORCES)

  • 김태우;강태진;박원규;정철민
    • 한국전산유체공학회지
    • /
    • 제20권2호
    • /
    • pp.81-87
    • /
    • 2015
  • For Underwater vehicles, Unwanted roll excursions are inevitable as they are caused by induced propeller torque, disturbances, and banking motion during turns. To estimate the manoeuvring performance of underwater vehicle, it is necessary to obtain the roll coefficient of body. This paper was covered estimation of roll coefficient of underwater vehicle using STAR-CCM+, commercial CFD(Computational Fluid Dynamics) code. The RANS equations for incompressible fluid flows was solved numerically by using a finite volume method. An MRF(Moving Reference Frame) Method was Also adopted for rotations of body. For the validation, the flow around a DARPA SUBOFF bare hull model was simulated and good agreement with experiments was obtained. And Pure roll coefficients were calculated and campared with the experimental data which were presented by Seoul National University. Finally, an underwater vehicle model with propeller was simulated and analyzed for estimation of roll coefficient variation caused by induced propeller torque.

Effect of Hot Water and Heat Treatment on the Apatite-forming Ability of Titania Films Formed on Titanium Metal via Anodic Oxidation in Acetic Acid Solutions

  • Cui, Xinyu;Cui, Xinyu
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.36.2-36.2
    • /
    • 2011
  • Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile.The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  • PDF

티타늄분말의 표면에 석출된 생체모방 아파타이트 (Biomimetic Apatite Precipitated on the Surface of Titanium Powder)

  • 김종희;심영욱;양태영;윤석영;박홍채
    • 한국세라믹학회지
    • /
    • 제47권2호
    • /
    • pp.127-131
    • /
    • 2010
  • Biomimetic whisker-like apatite was formed on thermally and NaOH-treated titanium powder in a simulated body fluid (SBF). In the early process of the SBF immersion, the surface structure of the titanium powder was loosened, possibly due to the dissolution of $Na^+$ ions on the surface of the titanium powder into SBF. When immersed for 7 days in SBF, fine precipitates appeared on the titanium surfaces; the coating layer (<200 nm in thickness) consisted of nanostructured, amorphous whisker-like and particulate phase, observed by TEM. With the extension of the immersion time to 16 days, the chrysanthemum flower type morphology of carbonated hydroxyapatite with a nanocrystallinity was developed on the surface of the titanium powder.