• Title/Summary/Keyword: simulated body fluid

Search Result 123, Processing Time 0.025 seconds

Coupled CFD-FEM simulation of hydrodynamic responses of a CALM buoy

  • Gu, Haoyuan;Chen, Hamn-Ching;Zhao, Linyue
    • Ocean Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.21-42
    • /
    • 2019
  • In this paper, the Finite-Analytic Navier-Stokes (FANS) code is coupled with an in-house finite-element code to study the dynamic interaction between a floating buoy and its mooring system. Hydrodynamic loads on the buoy are predicted with the FANS module, in which Large Eddy Simulation (LES) is used as the turbulence model. The mooring lines are modeled based on a slender body theory. Their dynamic responses are simulated with a nonlinear finite element module, MOORING3D. The two modules are coupled by transferring the forces and displacements of the buoy and its mooring system at their connections through an interface module. A free-decay model test was used to calibrate the coupled method. In addition, to investigate the capability of the present coupled method, numerical simulations of two degree-of-freedom vortex-induced motion of a CALM buoy in uniform currents were performed. With the study it can be verified that accurate predictions of the motion responses and tension responses of the CALM buoy system can be made with the coupling CFD-FEM method.

A simple chemical method for conversion of Turritella terebra sea snail into nanobioceramics

  • Sahin, Yesim Muge;Orman, Zeynep;Yucel, Sevil
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.492-498
    • /
    • 2018
  • In this study, a sea shell was converted into bioceramic phases at three different sintering temperatures ($450^{\circ}C$, $850^{\circ}C$, $1000^{\circ}C$). Among the obtained bioceramic phases, a valuable ${\beta}-TCP$ was produced via mechanochemical conversion method from sea snail Turritella terebra at $1000^{\circ}C$ sintering temperature. For this reason, only the bioceramic sintered at $1000^{\circ}C$ was concentrated on and FT-IR, SEM/EDX, BET, XRD, ICP-OES analyses were carried out for the complete characterization of ${\beta}-TCP$ phase. Biodegradation test in Tris-buffer solution, bioactivity tests in simulated body fluid (SBF) and cell studies were conducted. Bioactivity test results were promising and high rate of cell viability was observed in MTT assay after 24 hours and 7 days incubation. Results demonstrated that the produced ${\beta}-TCP$ bioceramic is qualified for further consideration and experimentation with its features of pore size and ability to support bone tissue growth and cell proliferation. This study suggests an easy, economic method of nanobioceramic production.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

Experimental and numerical investigation of the energy harvesting flexible flag in the wake of a bluff body

  • Latif, Usman;Abdullah, Chaudary;Uddin, Emad;Younis, M. Yamin;Sajid, Muhamad;Shah, Samiur Rehman;Mubasha, Aamir
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.279-292
    • /
    • 2018
  • Inspired by the energy harvesting eel, a flexible flag behind a D-shape cylinder in a uniform viscous flow was simulated by using the immersed boundary method (IBM) along with low-speed wind tunnel experimentation. The flag in the wake of the cylinder was strongly influenced by the vortices shed from the upstream cylinder under the vortex-vortex and vortex-body interactions. Geometric and flow parameters were optimized for the flexible flag subjected to passive flapping. The influence of length and bending coefficient of the flexible flag, the diameters (D) of the cylinder and the streamwise spacing between the cylinder and the flag, on the energy generation was examined. Constructive and destructive vortex interaction modes, unidirectional and bidirectional bending and the different flapping frequency were found which explained the variations in the energy of the downstream flag. Voltage output and flapping behavior of the flag were also observed experimentally to find a more direct relationship between the bending of the flag and its power generation.

Study on the development of polycaprolacton silica nanohybrid for bone substitutes (폴리카프로락톤 실리카 나노 복합체를 이용한 골이식대체재 개발에 관한 연구)

  • Jung, Keu-sik;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok;Kim, Jong-Yeo
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.2
    • /
    • pp.425-448
    • /
    • 2004
  • A bioactive and degradable poly(epsilon -caprolactone)/silica nanohybrid(PSH) was synthesized for the application as a bone substitute. PSH was manufactured by using silica and polycaprolacton. PSH was manufactured in some composition after low crystaline apatite had been formed in simulated body fluid and, was used this study. The safety of the PSH was established by test of acute, and subacute toxicity, sensitization cytotoxicity and sterility. In order to assess activity of osteoblast, the test for attaching osteoblast, proliferation test for osteoblast, differentiating gene expression test are performed in vitro. And bone substitutes were grafted in rabbit's calvarium, during 8 weeks for testing efficacy of bone substitutes. Degree of osteogenesis and absorption of substitutes were evaluated in microscopic level. In result, it was not appeared that acute and subacute toxicity, sensitization in intradermal induction phase, topical induction phase and challenge phase. It was shown that the test can not inhibit cell proliferation. adversely, it had some ability to accelerate cell proliferation. The result of sterility test described bacterial growth was not detected in most test tube. The attaching and proliferation test of osteoblast had good results. In the result of differentiating gene expression test for osteoblast, cbfa1 and, alkaline phosphatase, osteocalcin and GAPDH were detected with mRNA analysis. In the PSH bone formation test, ostgeoblastic activity would be different as material constitution but it had good new bone formation ability except group #218. futhermore, some material had been absorbed within 8 weeks. Above studies, PSH had bio-compatibility with human body, new bone formation ability and accelerate osteoblastic activity. So it would be the efficient bone substitute material with bio-active and biodegradable.

Development of Analytical Model of Spindle and Rack Gear Systems for Knuckle Boom Crane (굴절식 크레인의 스핀들과 랙 기어 응력 해석 모델 개발)

  • An, Junwook;Lee, Kwang Hee;Gyu, Yusung;Jo, Je Sang;Lee, Chul Hee
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, a flexible multi-body dynamic simulation model of a knuckle boom crane is developed to evaluate the stress of spindle and rack gears under dynamic working conditions. It is difficult to predict potential critical damage to a knuckle boom crane if only the static condition is considered during the development process. To solve this issue, a severe working scenario (high speed with heavy load) was simulated as a boundary condition for testing the integrity of the dynamic simulation model. The crane gear model is defined as a flexible body so contact analysis was performed. The functional motion of a knuckle boom crane is generated by applying forces at each end of the rack gear, which was converted from hydraulic pressure measured for the experiment. The bending and contact stress of gears are theoretically calculated to validate the simulation model. In the simulation, the maximum stress of spindle and rack gears are observed when the crane abruptly stops. Peak impact force is produced at the contact interface between pinion and rack gears due to the inertia force of the boom. However, the maximum stress (bending/contact) of spindle and rack are under the yield stress, which is safe from damage. By using the developed simulation model, the experiment process is expected to be minimized.

Role of Ca in Modifying Corrosion Resistance and Bioactivity of Plasma Anodized AM60 Magnesium Alloys

  • Anawati, Anawati;Asoh, Hidetaka;Ono, Sachiko
    • Corrosion Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.120-124
    • /
    • 2016
  • The effect of alloying element Ca (0, 1, and 2 wt%) on corrosion resistance and bioactivity of the as-received and anodized surface of rolled plate AM60 alloys was investigated. A plasma electrolytic oxidation (PEO) was carried out to form anodic oxide film in $0.5mol\;dm^{-3}\;Na_3PO_4$ solution. The corrosion behavior was studied by polarization measurements while the in vitro bioactivity was tested by soaking the specimens in Simulated Body Fluid (1.5xSBF). Optical micrograph and elemental analysis of the substrate surfaces indicated that the number of intermetallic particles increased with Ca content in the alloys owing to the formation of a new phase $Al_2Ca$. The corrosion resistance of AM60 specimens improved only slightly by alloying with 2 wt% Ca which was attributed to the reticular distribution of $Al_2Ca$ phase existed in the alloy that might became barrier for corrosion propagation across grain boundaries. Corrosion resistance of the three alloys was significantly improved by coating the substrates with anodic oxide film formed by PEO. The film mainly composed of magnesium phosphate with thickness in the range $30-40{\mu}m$. The heat resistant phase of $Al_2Ca$ was believed to retard the plasma discharge during anodization and, hence, decreased the film thickness of Ca-containing alloys. The highest apatite forming ability in 1.5xSBF was observed for AM60-1Ca specimens (both substrate and anodized) that exhibited more degradation than the other two alloys as indicated by surface observation. The increase of surface roughness and the degree of supersaturation of 1.5xSBF due to dissolution of Mg ions from the substrate surface or the release of film compounds from the anodized surface are important factors to enhance deposition of Ca-P compound on the specimen surfaces.

Enhanced compatibility and initial stability of Ti6Al4V alloy orthodontic miniscrews subjected to anodization, cyclic precalcification, and heat treatment

  • Oh, Eun-Ju;Nguyen, Thuy-Duong T.;Lee, Seung-Youp;Jeon, Young-Mi;Bae, Tae-Sung;Kim, Jong-Gee
    • The korean journal of orthodontics
    • /
    • v.44 no.5
    • /
    • pp.246-253
    • /
    • 2014
  • Objective: To evaluate the bioactivity, and the biomechanical and bone-regenerative properties of Ti6Al4V miniscrews subjected to anodization, cyclic precalcification, and heat treatment (APH treatment) and their potential clinical use. Methods: The surfaces of Ti6Al4V alloys were modified by APH treatment. Bioactivity was assessed after immersion in simulated body fluid for 3 days. The hydrophilicity and the roughness of APH-treated surfaces were compared with those of untreated (UT) and anodized and heat-treated (AH) samples. For in vivo tests, 32 miniscrews (16 UT and 16 APH) were inserted into 16 Wistar rats, one UT and one APH-treated miniscrew in either tibia. The miniscrews were extracted after 3 and 6 weeks and their osseointegration (n = 8 for each time point and group) was investigated by surface and histological analyses and removal torque measurements. Results: APH treatment formed a dense surface array of nanotubular TiO2 layer covered with a compact apatite-like film. APH-treated samples showed better bioactivity and biocompatibility compared with UT and AH samples. In vivo, APH-treated miniscrews showed higher removal torque and bone-to-implant contact than did UT miniscrews, after both 3 and 6 weeks (p < 0.05). Also, early deposition of densely mineralized bone around APH-treated miniscrews was observed, implying good bonding to the treated surface. Conclusions: APH treatment enhanced the bioactivity, and the biomechanical and bone regenerative properties of the Ti6Al4V alloy miniscrews. The enhanced initial stability afforded should be valuable in orthodontic applications.

Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant (냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성)

  • Kim, Dongkyun;Kim, Jongyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.

In-vitro and In-vivo Biocompatibility Evaluation of Silica Based Bio-active Glass Prepared by Hydrothermal Method

  • Sarkar, Swapan Kumar;Nguyen, Phuong Thi;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.53.1-53.1
    • /
    • 2011
  • Bioactive glass powders were synthesized by hydrothermal chemical route by the use of ultrasonic energy irradiation. We used sodalime, calcium nitrate tetra hydrate and di ammonium hydrogen phosphate as the precursor material to synthesize $SiO_2$ rich bio-active glass materials. The $SiO_2$ content was varied in the precursor mixture to 60, 52 and 45 mole%. Dense compacts were obtained by microwave sintering at $1,100^{\circ}C$. Mechanical properties were characterized for the fabricated dense bioactive glasses and were found to be comparable with conventional CaO-$SiO_2$-$Na_2O$-$P_2O_5$ bioactive glass. Detailed biocompatibility evaluation of the glass composition was investigated by in-vitro culture of MG-63 cell and mesenchyme stem cell. Cell adhesion behavior was investigated for both of the cell by one cell morphology for 30, 60 and 90 minutes. Cell proliferation behavior was investigated by culturing both of the cells for 1, 3 and 7 days and was found to be excellent. Both SEM and confocal laser scanning microscopy were used for the investigation. Western blot analysis was performed to evaluate the bimolecular level interaction and extent and rate of specific protein expression. The ability to form biological apatite in physiological condition was observed with simulated body fluid (SBF). In-vivo bone formation behavior was investigated after implanting the materials inside rabbit femur for 1 and 3 month. The bone formation behavior was excellent in all the bioglass compositions, specially the composition with 60% $SiO_2$ content showed most promising trend.

  • PDF