• Title/Summary/Keyword: simulant

Search Result 122, Processing Time 0.036 seconds

Exposure Assessment of Heavy Metals Migrated from Glassware on the Korean Market (국내 유통 식품용 유리제의 중금속 노출 평가)

  • Kim, Eunbee;Hwang, Joung Boon;Lee, Jung Eun;Choi, Jae Chun;Park, Se-Jong;Lee, Jong Kwon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.1
    • /
    • pp.15-21
    • /
    • 2022
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), and barium (Ba) from glassware into a food simulant and to evaluate the exposure of each element. The test articles were glassware, including tableware, pots, and other containers. Pb, Cd, and Ba were analysed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The analytical performance of the method was validated in terms of its linearity, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. The monitoring was performed for 110 samples such as glass cups, containers, pots, and bottles. a food simulant. Migration test was conducted at 25? for 24 hours in a dark place using 4% acetic acid as a food simulant. Based on the data; exposure assessment was carried out to compare the estimated daily intake (EDI) to the human safety criteria. The risk levels of Pb and Ba determined in this study were approximately 1.9% and 0.3% of the provisional tolerable weekly intake (PTWI) and tolerable daily intake (TDI) value, respectively, thereby indicating a low exposure to the population.

Experimental validation of simulating natural circulation of liquid metal using water

  • Lee, Min Ho;Jerng, Dong Wook;Bang, In Cheol
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1963-1973
    • /
    • 2020
  • Liquid metal-cooled reactors use various passive safety systems driven by natural circulation. Investigating these safety systems experimentally is more advantageous by using a simulant. Although numerous experimental approaches have been applied to natural circulation-driven passive safety systems using simulants, there has been no clear validation of the similarity law. To validate the similarity law experimentally, SINCRO-V experiment was conducted using Wood's metal and water for simulant of the Wood's metal. A pair of SINCRO-V facilities with length-scale ratio of 14.1:1 for identical Bo' was investigated, which was the main similarity parameter in temperature field simulation. In the experimental range of 0.2-1.0% of decay heat, the temperature distribution characteristics of the small water facility were very similar to that of the large Wood's metal facility. The temperature of the Wood's metal predicted by the water experiment showed good agreement with the actual Wood's metal temperature. Despite some error factors like discordance of Gr' and property change along the temperature, the water experiment predicted the Wood's metal temperature with an error of 27%. The validity of the similarity law was confirmed by the SINCRO-V experiments.

Simulated Experiments on High Pressure Melt Ejection in the Reactor Cavity During Severe Accident (원자로 가상사고시(노심) 용융물 고압 분출 모의 실험 연구)

  • Jeong, Han-Won;Kim, Do-Hyeong;Lee, Gyu-Jeong;Kim, Sang-Baek;Park, Rae-Jun;Kim, Hui-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1447-1456
    • /
    • 2000
  • Simulated experiments of high pressure melt ejection(HPME) are performed to measure the released fraction of corium simulant from the French type PWR cavity. The experiments are carried out on a 1/20th linear scaled model of the Ulchin 1&2 cavity. Water or woods metal and nitrogen is used as simulant of molten corium and steam, respectively. Experimental parameters are water mass, annulus area and breach size. It is shown that only breach size effects is very important while the mass and the annulus area do not affect the released fraction. It is found that the liquid film transport is much more dominant mechanism than the entrainment droplet transport, especially in linear scale down simulated HPME experiment.

An Experimental Study on the Characteristics of Spray Pattern and the Mixing Performance of Unlike-impinging Split Triplet Injector(F-O-O-F) (F-O-O-F 충돌형 injector의 분무특성 및 혼합성능에 관한 실험적 연구)

  • Lee, K.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 1999
  • Mixing efficiency of the unlike Impinging split triplet injector(FOOF type) were measured to investigate the effect of the momentum ratio variation. $H_2$O/kerosene were used as a propellant simulant. The maximum mixing efficiency occured at the momentum ratio 1.5 (total mixture ratio 1.89). Calculated mixing efficiency of real propellant LOX/Kerosene showed similar trend but maximum efficiency of characteristic velocity occurs at the momentum ratio 2.0(total mixture ratio 2.17). Although there exist a little discrepancy between calculated mixing efficiency based on simulant cold test and hot fire test results, this calculated mixing efficiency can be used to predict hot fire mixing efficiency.

  • PDF

Spray characteristics of misaligned impinging injectors

  • Subedi, Bimal;Son, Min;Kim, Woojin;Choi, Jangsu;Koo, Jaye
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1257-1262
    • /
    • 2014
  • The variances of atomization characteristics with the misalignment of injectors defined as the fraction of skewness for various angles of impingement and pressure conditions were studied using the doublet impinging injectors with a like-on-like arrangement. Water was used as simulant and the spray characteristics along with the changes in the skewness were analyzed using the methods of spray image photography. Experiment was carried for the impinging nozzles of orifice diameter of 1.2 mm within Reynolds numbers ranging from $9{\times}10^3-4.5{\times}10^4$ and the fraction of skewness considered for the experiment ranges from 0.0 to 0.9 at ambient temperature condition. Flat sheet with a distinct rim produced perpendicular to the plane of impinging jets goes ondisappear and sheet appears comparatively shorterwith the increase in fraction of skewness resulting the atomization of fluid droplet very close to impingement point with decrease in breakup length and increase in spray angle up to certain extent. The maximum allowable skewness was found as the result. The skewness up to the certain extent can be considered as the parameter to control the atomization characteristics of simulant inside the combustion chamberproviding the high economic performance of fuel and time.

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Characterisation and Durability of a Vitrified Wasteform for Simulated Chrompik III Waste

  • Walling, Sam A.;Gardner, Laura J.;Pang, H.K. Celine;Mann, Colleen;Corkhill, Claire L.;Mikusova, Alexandra;Lichvar, Peter;Hyatt, Neil C.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.3
    • /
    • pp.339-352
    • /
    • 2021
  • Legacy waste from the decommissioned A-1 nuclear power plant in the Slovak Republic is scheduled for immobilisation within a tailored alkali borosilicate glass formulation, as part of ongoing site cleanup. The aqueous durability and characterisation of a simulant glass wasteform for Chrompik III legacy waste, was investigated, including dissolution experiments up to 112 days (90℃, ASTM Type 1 water). The wasteform was an amorphous, light green glassy product, with no observed phase separation or crystalline inclusions. Aqueous leach testing revealed a suitably durable product over the timescale investigated, comparing positively to other simulant nuclear waste glasses and vitreous products tested under similar conditions. Iron and titanium rich precipitates were observed to form at the surface of monolithic samples during leaching, with the formation of an alkali deficient alteration layer behind these at later ages. Overall this glass appears to perform well, and in line with expectations for this chemistry, although longer-term testing would be required to predict overall durability. This work will contribute to developing confidence in the disposability of vitrified Chrompik legacy wastes.

Analysis of Styrene Dimer and Trimer in Cup Noodle Containers (컵라면 용기중의 스티렌다이머와 트리머의 분석)

  • Lee, Kwang-Ho;Jang, Young-Mi;Kwak, In-Shin;Yoo, Seung-Seok;Kim, Ki-Myeong;Choi, Byung-Hee;Lee, Chul-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.931-937
    • /
    • 1999
  • Styrene dimers and trimers from polystyrene cup noodle containers were analyzed by GC and GC/MS extracted with various simulants. For the quantitation of styrene dimers and trimers, 1,3-diphenylpropane (DP) and benzyln-butyl phthalate (BBP) were chosen as the standards. The results showed that the average of the styrene dimers in the containers was 603 ppm, and that of trimers was 5731 ppm. Four styrene dimers, including 1,2-diphenyl-cyclobutane, were identified as well as seven trimers such as 2,4,6-triphenyl-l-hexene. The migration of the styrene dimers and trimers, from the cup noodle containers of polystyrene into foods, was conducted using simulants including boiling water as well as soybean oil and n-heptane. In addition to, the analysis of each migrated styrene was also performed filled with boiling water into noodle and soup after certain time (5, 10, 20, 30 min). The results showed that the migration of styrene dimers and trimers from cup noodle containers was not detected in the case of using boiled water or soybean oil as a simulant, while styrene dimers and trimers were detected 1.18 ppm and 14.21 ppm, respectively, when heptane was adopted as a simulant. In the case of filling with boiled water into noodle and soup, both styrenes were not detected at 5 min and 10 min, however, some samples standing for 20 min released styrene dimers and trimers as much as 0.009 ppm, and 0.019 ppm for 30 min.

  • PDF

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property (PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향)

  • Kang, Da Hee;Kim, Min-Ji;Jo, Hanjoo;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.191-195
    • /
    • 2018
  • In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.