• Title/Summary/Keyword: simplified pulse models

Search Result 4, Processing Time 0.019 seconds

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

The effects of peak ground velocity of near-field ground motions on the seismic responses of base-isolated structures mounted on friction bearings

  • Tajammolian, H.;Khoshnoudian, F.;Talaei, S.;Loghman, V.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1259-1281
    • /
    • 2014
  • This research has been conducted in order to investigate the effects of peak ground velocity (PGV) of near-field earthquakes on base-isolated structures mounted on Single Friction Pendulum (SFP), Double Concave Friction Pendulum (DCFP) and Triple Concave Friction Pendulum (TCFP) bearings. Seismic responses of base-isolated structures subjected to simplified near field pulses including the forward directivity and the fling step pulses are considered in this study. Behaviour of a two dimensional single story structure mounting on SFP, DCFP and TCFP isolators investigated employing a variety range of isolators and the velocity (PGV) of the forward directivity and the fling step pulses as the main variables of the near field earthquakes. The maximum isolator displacement and base shear are selected as main seismic responses. Peak seismic responses of different isolator types are compared to emphasize the efficiency of each one under near field earthquakes. It is demonstrated that rising the PGVs increases the isolator displacement and base shear of structure. The effects of the forward directivity are greater than the fling step pulses. Furthermore, TCFP isolator is more effective to control the near field effects than the other friction pendulum isolators are. This efficiency is more significant in pulses with longer period and greater PGVs.

EXPANSION OF HYUNDAI'S MEDIUM SPEED DIESEL ENGINE FAMILY, HiMSEN (현대중공업 중속디젤엔진 힘센엔진 패밀리의 신모델 추가 개발)

  • Kim, J.S.;Kim, J.T.;Kwon, O.S.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.92-100
    • /
    • 2005
  • Since HiMSEN H21/32, a new medium speed diesel engine of Hyundai's own design, was introduced in 2001, Hyundai has added new models of H25/33 and H17/28 into HiMSEN engine family. These two new engines take after faithfully to the original HiMSEN concept of a PRACTICAL engine by Hi-Touch and Hi-Tech. The prototype of H25/33 was developed jointly with Rolls Royce Bergen originally and also introduced in 2001. But most of the engine design have been changed by Hyundai for the commercial versions to be a member of HiMSEN family, which has little interchangeability with the prototype. H17/28 is now under development as the smallest size of the family. This new engine also has the longest stroke of a class engine, which has been proven as the best basis for future environmental challenge. The higher compression ratio of 17 and optimized Miller Timing with Simplified pulse turbocharging system applied all HiMSEN engines as which showed the most practical solution against current heavy fuel combustion issues for the time being before introducing digital control system. This paper describes the design and development of these new HiMSEN engines and also reviews the service experiences of H21/32 and H25/33, which launched successfully.

  • PDF

Electromagnetic Characteristics of Dielectric Barrier Discharge Plasma Based on Fluid Dynamical Modeling (유체역학에 바탕한 플라즈마 모델링을 통한 유전체 장벽 방전 플라즈마의 전파 특성 해석)

  • Kim, Yu-Na;Oh, Il-Young;Hong, Yong-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.331-336
    • /
    • 2013
  • In this paper, plasma modeling is achieved using fluid dynamics, thereby electron density is derived. The way proposes the key to overcoming the limitations of conventional researches which adopt simplified plasma model. The result is coupled with Maxwell-Boltzmann system in order to calculate scattering waves in various incident angle. The first part is dedicated to perform plasma modeling in dielectric barrier discharge(DBD) structure. Suzen-Huang model is adopted among various models due to the fact that it uses time independent variables to calculated potential and electron distribution in static system. The second part deals with finite difference time domain(FDTD) scheme which computes the scattered waves when the modulated Gaussian pulse is incident. Founded on it, radar cross section(RCS) is observed. Consequently, RCS is decreased by 1~2 dB with DBD plasma. The result is analogous to the RCS measurement in other researches.