DOI QR코드

DOI QR Code

Electromagnetic Characteristics of Dielectric Barrier Discharge Plasma Based on Fluid Dynamical Modeling

유체역학에 바탕한 플라즈마 모델링을 통한 유전체 장벽 방전 플라즈마의 전파 특성 해석

  • Kim, Yu-Na (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Oh, Il-Young (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Hong, Yong-Jun (Agency for Defence Development) ;
  • Yook, Jong-Gwan (Department of Electric and Electronic Engineering, Yonsei University)
  • Received : 2012.11.30
  • Accepted : 2013.02.04
  • Published : 2013.03.31

Abstract

In this paper, plasma modeling is achieved using fluid dynamics, thereby electron density is derived. The way proposes the key to overcoming the limitations of conventional researches which adopt simplified plasma model. The result is coupled with Maxwell-Boltzmann system in order to calculate scattering waves in various incident angle. The first part is dedicated to perform plasma modeling in dielectric barrier discharge(DBD) structure. Suzen-Huang model is adopted among various models due to the fact that it uses time independent variables to calculated potential and electron distribution in static system. The second part deals with finite difference time domain(FDTD) scheme which computes the scattered waves when the modulated Gaussian pulse is incident. Founded on it, radar cross section(RCS) is observed. Consequently, RCS is decreased by 1~2 dB with DBD plasma. The result is analogous to the RCS measurement in other researches.

본 논문은 유체 역학적 관점에서 플라즈마 모델링을 통하여 전자 밀도를 계산하는 방식을 제안하였다. 그럼으로써 기존 논문들에서 사용된 단순화된 플라즈마 모델링의 한계를 극복하였다. 계산된 전자 밀도를 finite-difference time-domain(FDTD) 기법에 기반한 맥스웰-볼츠만 시스템에 연계하여 다양한 각도에서 입사하는 전자기파에 대한 산란파 계산을 수행하였다. 전반부에서는 유전체 장벽 방전(dielectric barrier discharge: DBD) 구조에서 발생되는 플라즈마를 모델링하였다. 다수의 모델링 방식 중, 시간 독립적인 변수를 도입하여 정지계의 전위 분포와 전자 밀도 분포를 계산하는 Suzen-Huang 모델을 이용하였다. 후반부에서는 변조된 가우시안 펄스를 플라즈마에 입사시켜 발생하는 산란파를 FDTD 기법을 이용하여 계산하였으며, 이를 바탕으로 레이더 단면적(radar cross section: RCS)을 관찰하였다. 모의실험 결과, DBD 플라즈마에 의해 1~2 dB 감소하는 것을 관찰할 수 있었다. 이는 기존의 논문에서 알려진 RCS 측정 결과와 유사한 양상을 보이며, 본 논문에서 제안한 모델링의 유효성을 확인하였다.

Keywords

References

  1. B. Chaudhury, S. Chaturvedi, "Comparison of wave propagation studies in plasmas using three-dimensional finite-difference time-domain and ray-tracing methods", Physics of Plasmas, vol. 13, p. 123302, Dec. 2006. https://doi.org/10.1063/1.2397582
  2. G. Cerri, F. Moglie, R. Montesi, P. Russo, and E. Vecchioni, "FDTD solution of the Maxwell-Boltzmann system for electromagnetic wave propagation in a plasma", IEEE Trans. Antennas and Propag., vol. 56, no. 8, pp. 2584-2588, Aug. 2008. https://doi.org/10.1109/TAP.2008.927505
  3. U. S. Inan, R. A. Marshall, Numerical Electromagnetics: The FDTD Method, Cambridge University Press, 2011.
  4. D. M. Orlov, T. C. Corke, and M. Patel, "Electric circuit model for aerodynamic plasma actuator", AIAA Paper, vol. 126, 2006.
  5. B. Jayaraman, W. Shyy, "Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer", Progress in Aerospace Sciences, vol. 44, pp. 139-191, Apr. 2008. https://doi.org/10.1016/j.paerosci.2007.10.004
  6. B. R. Munson, D. F. Young, T. H. Okiishi, and W. Shao, Fundamentals of Fluid Mechanics, vol. 3, Wiley York, NY, USA, 1998.
  7. Y. B. Suzen, P. G. Huang, "Simulations of flow separation control using plasma actuators", AIAA Paper, vol. 877. Jan. 2006.
  8. A. Bouchmal, "Modeling of dielectric-barrier discharge actuator", Unpublished Thesis(M.A.), Delft University of Technology, Mar. 2011.
  9. C. L. Enloe, Thomas E. McLaughlin, Robert D. Van- Dyken, and John C. Fischer, "Mechanisms and responses of a single dielectric barrier plasma actuator: Geometric effects", AIAA Journal, vol. 42, pp. 595- 604, Mar. 2004. https://doi.org/10.2514/1.3884
  10. C. L. Enloe, T. E. McLaughlin, R. D. VanDyken, and K. D. Kachner, "Plasma structure in the aerodynamic plasma actuator", AIAA Journal, vol. 844, Jan. 2004.
  11. M. Forte, J. Jolibois, J. Pons, E. Moreau, G. Touchard, and M. Cazalens, "Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control", Exp. in Fluids, vol. 43, pp. 917-928, 2007. https://doi.org/10.1007/s00348-007-0362-7
  12. K. Umashankar, A. Taflove, "A novel method to analyze electromagnetic scattering of complex objects", IEEE Trans. Electromagnetic Compatibility., pp. 397-405, Nov. 1982.
  13. S. Wolf, M. Arjomandi, "Investigation of the effect of dielectric barrier discharge plasma actuators on the radar cross section of an object", Journal of Physics D: Applied Physics, vol. 44, p. 315202, Jul. 2011. https://doi.org/10.1088/0022-3727/44/31/315202