• Title/Summary/Keyword: simplified intensity

Search Result 83, Processing Time 0.029 seconds

Analysis of Shape Change of a Surface Crack during Stable Fatigue Growth (안정피로성장 중인 표면균열 형상변화의 해석)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2843-2853
    • /
    • 1996
  • The multi-point procedure is developed to predict the shape change of a semi-elliptical surface crack during stable fatigue crack growth. 3-D stress intensity factors along a crack front are calculated using the simplified 3-D J-intergral. Crack growth rate coefficient in the Paris law is assumed to be constant along the crack growth. Crack growth rate is set to be the distance between the two parallel tangent lines on the two semi-elliptic crack fronts before and after crack growth.

Computer simulation of electric field distribution in FALC process (FALC 공정에서의 전계 분포 전산모사)

  • 정찬엽;최덕균;정용재
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.2
    • /
    • pp.93-97
    • /
    • 2003
  • The crystallization behavior of amorphous silicon is affected by direction and intensity of electric field in FALC(Field-Aided Lateral Crystallization). Electric field was calculated in a simplified model using conductivity data of Mo, a-Si, $SiO_2$and boundary conditions for electric potential at the electrodes. The magnitude of electric field intensity in each corner of cathode was much larger than that in the center of patterns, and the electric field direction was 50~60 degree outside to cathode. And electric field intensity at a relatively small pattern was larger than that of a large pattern.

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

Voice range profile in premutation, mutation, and postmutation of men (변성이전, 변성 및 변성이후 남성의 발성범위 프로파일)

  • Kim, Jaeock;Lee, Seung Jin
    • Phonetics and Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.89-100
    • /
    • 2021
  • This study compared the voice range profiles (VRPs) with glissando and simplified VRP methods with 57 men who were in premutation (8-13 years), mutation (11-16 years), and postmutation (10-24 years) stages. The difference between modal and falsetto areas measured in two VRP methods was also compared. As the results, the average fundamental frequency (F0) was in the order of premuaton>mutation>postmutation. The maximum F0 (F0max), the range of F0 (F0range), the maximum intensity (Imax), and the range of intensity (Irange) were the lowest in the mutation stage, and these variables were higher in falsetto area than in modal area in both methods. In addition, most variables of VRP in glissando were higher than in simplified VRP, but the differences were not significant. This study showed that, in men in mutation stage, due to the temporary anatomical and physiological changes of the larynx, the mechanism of the vocal folds vibration changes and VRP shows a different pattern from that of other age groups. Both the VRPs of glissando and simplifed VRP are suitable for clinical practice by experienced examiners. And it is necessary to measure not only the falsetto area but also the modal area when measuring VRP.

A Simplified Procedure for Performance-Based Design

  • Zareian, Farzin;Krawinkler, Helmut
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.13-23
    • /
    • 2007
  • This paper focuses on providing a practical approach for decision making in Performance-Based Design (PBD). Satisfactory performance is defined by several performance objectives that place limits on direct (monetary) loss and on a tolerable probability of collapse. No specific limits are placed on conventional engineering parameters such as forces or deformations, although it is assumed that sound capacity design principles are followed in the design process. The proposed design procedure incorporates different performance objectives up front, before the structural system is created, and assists engineers in making informed decisions on the choice of an effective structural system and its stiffness (period), base shear strength, and other important global structural parameters. The tools needed to implement this design process are (1) hazard curves for a specific ground motion intensity measure, (2) mean loss curves for structural and nonstructural subsystems, (3) structural response curves that relate, for different structural systems, a ground motion intensity measure to the engineering demand parameter (e.g., interstory drift or floor acceleration) on which the subsystem loss depends, and (4) collapse fragility curves. Since the proposed procedure facilitates decision making in the conceptual design process, it is referred to as a Design Decision Support System, DDSS. Implementation of the DDSS is illustrated in an example to demonstrate its practicality.

Numerical simulation of the thermoelectric behavior of CNTs/CFRP aircraft composite laminates

  • Lin, Yueguo;Lafarie-Frenot, Marie Christine;Bai, Jinbo;Gigliotti, Marco
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.633-652
    • /
    • 2018
  • The present paper focuses on the development of a model for simulating the thermoelectric behavior of CNTs/CFRP Organic Matrix Composite (OMC) laminates for aeronautical applications. The model is developed within the framework of the thermodynamics of irreversible processes and implemented into commercial ABAQUS Finite Element software and validated by comparison with experimental thermoelectric tests on two types of composites materials, namely Type A with Carbon Nanotubes (CNT) and Type B without CNT. A simplified model, neglecting heat conduction, is also developed for simplifying the identification process. The model is then applied for FEM numerical simulation of the thermoelectric response of aircraft panel structures subjected to electrical loads, in order to discuss the potential danger coming from electrical solicitations. The structural simulations are performed on quasi-isotropic stacking sequences (QI) $[45/-45/90/0]_s$ using composite materials of type A and type B and compared with those obtained on plates made of metallic material (aluminum). For both tested cases-transit of electric current of intermediate intensity (9A) and electrical loading on panels made of composite material-higher heating intensity is observed in composites materials with respect to the corresponding metallic ones.

A Study on the Turbulent Flow Characteristics of Swirl Jets for Improvement of Combustion Efficiency (연소효율 개선을 위한 스월제트의 난류유동 특성에 관한 연구)

  • Ko, Dong Guk;Yoon, Suck Ju
    • Journal of ILASS-Korea
    • /
    • v.19 no.2
    • /
    • pp.75-81
    • /
    • 2014
  • Swirl flow in the gun type burner has a decisive effect on the stabilization of the flame, improvement of the combustion efficiency, and also a reduction of NOx. This swirl flow is created by the spinner which is inside the airtube that guide the combustion air. Gun type burner has generally the inner devices composed nozzle adapter, spark gap ignitor, and spinner. These inner components change the air flow behavior passing through air tube. Meanwhile, turbulent characteristics of this air flow are important to understand the combustion phenomena in the gun type burner, because the mixture of fuel and air are depended on. However, nearly all of the studies have been analyzed the turbulent flow of simplified combustion formation without the inner devices. So, this study conducted the measurement using by hot-wire anemometer and analyzed turbulent flow characteristics of the swirl flow discharged from the air tube with inner devices. Turbulence characteristics come up in this study were turbulence intensity, kinetic energy and shear stress of the air flow with the change of the distance of axial direction from the exit of the air tube.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

A Simplified Method to Estimate Welding Induced Crack of Weldments with Initial Structural Restraints

  • Lee, J.M.;Paik, J.K.;Kim, M.H.;Kang, S.W.;Heo, H.Y.
    • International Journal of Korean Welding Society
    • /
    • v.4 no.1
    • /
    • pp.38-45
    • /
    • 2004
  • A practical method for evaluating the possibility of the occurrence of cracking in actual thick-plate T-joint weldments is presented in this study. Systematic experitrients based on the method of the design of experiment are conducted in order to investigate the crack tendency in relation to typical welding parameters such as diffusible hydrogen, restraint intensity, preheating temperature and so on. The elastic analysis using the fmite element techniques is employed to quantify the restraint intensities of the specimens. The defined restraint intensities are treated in numerical way for the sake of considering the most uncertain factor among some major factors that govern the cracking phenomena due to welding. The critical plane for judgment of the crack occurrence or crack density is presented as a function of typical welding parameters including determined restraint intensities. The results of numerical estimation by the proposed method for the experimental specimens show the usefulness as a practical tool in welding induced crack problem having extensive uncertainties.

  • PDF