• Title/Summary/Keyword: simplified design method

Search Result 696, Processing Time 0.022 seconds

A method for Simplified and Equivalent Finite Element Modeling Using Optimization Technique (최적화를 이용한 단순 유화 요소 모델링 기법 개발)

  • Lee, Gwang-Won;Seok, Il-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • As computer power is increased, refined finite element models are employed for structural analysis. However, it is difficult and expensive to use refined models in the design stage. The refined models especially cause problems in the preliminary design where the design is frequently changed. Therefore, simplified models are needed. The simplification process is regarded as an empirical technique. Simplified and equivalent finite element model of a structure has been studied and used in the preliminary design. A general approach to establish the simplified and equivalent model is presented. The generated simple model has satisfactory correlation with the corresponding refined finite element model. An optimization method, the Goal Programming algorithm is used to make the simple model. The simplified model is used for the design change and the changed design is recovered onto the original design. The presented method was verified with three examples.

Simplified design formula of slender concrete filled steel tubular beam-columns

  • Chung, Jinan;Matsui, Chiaki;Tsuda, Keigo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • The objective of this paper is to develop a simplified method that could predict the strength of concrete filled steel tube (CFT) columns applicable to high strength material under combined axial compression and flexure. The simplified method for determining the strength of CFT columns is based on the interaction curve of the section approached by a polygonal connection of the points. These points are determined by using symmetrical properties of the CFT section. For each point, a simple equation is proposed to determine the strength of the slender columns under compression and flexure. The simple equation was adjusted with results of elasto-plastic analysis results. Validation of the simplified method is undertaken by comparison with data from the test conducted at Kyushu University. These results confirm the fact that the simplified method could accurately and reliably predict the strength of CFT columns under combined axial compression and flexure.

A Study on the Design Concept and Simplified Analysis Method in Dropped Object Accidents by Lifting Crane (크레인 중량물 낙하사고에 대응한 설계개념과 간이 해석법에 대한 연구)

  • Kim, Ul-Nyeon;Kim, Han-Byul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.251-262
    • /
    • 2019
  • This paper is about design concept and simplified analysis method against dropped object events. The ships and offshore structures are exposed to various types of dropped object accidents such as laydown area struck by drill collar and topside deck hit by food container during their lifetime. Mitigation can be accomplished by proper facility layout and designing structures to safely absorb energy from accidental loads. It shall be designed to avoid loss of life, environmental pollution and loss of assets. Impact loads can lead to structural global collapse of the main structure or punching of a local barrier type structure with potential to escalate directly or indirectly to a global collapse of the structure. This study provides the background information on the issue of dropped object of the shipyard and also focuses on structural assessment of the local individual component such as deck plate, stiffener and web/girder by using simplified analysis method. The results of the simplified analysis method were compared with numerical results using non-linear finite element simulation.

A simplified seismic design method for low-rise dual frame-steel plate shear wall structures

  • Bai, Jiulin;Zhang, Jianyuan;Du, Ke;Jin, Shuangshuang
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.447-462
    • /
    • 2020
  • In this paper, a simplified seismic design method for low-rise dual frame-steel plate shear wall (SPSW) structures is proposed in the framework of performance-based seismic design. The dynamic response of a low-rise structure is mainly dominated by the first-mode and the structural system can be simplified to an equivalent single degree-of-freedom (SDOF) oscillator. The dual frame-SPSW structure was decomposed into a frame system and a SPSW system and they were simplified to an equivalent F-SDOF (SDOF for frame) oscillator and an equivalent S-SDOF (SDOF for SPSW) oscillator, respectively. The analytical models of F-SDOF and S-SDOF oscillators were constructed based on the OpenSees platform. The equivalent SDOF oscillator (D-SDOF, dual SDOF) for the frame-SPSW system was developed by combining the F-SDOF and S-SDOF oscillators in parallel. By employing the lateral force resistance coefficients and seismic demands of D-SDOF oscillator, the design approach of SPSW systems was developed. A 7-story frame-SPSW system was adopted to verify the feasibility and demonstrate the design process of the simplified method. The results also show the seismic demands derived by the equivalent dual SDOF oscillator have a good consistence with that by the frame-SPSW structure.

A Study on the Simplified Economics Evaluation Method for Selecting a Heat Source System at the Pre-design Phase (초기계획단계에서 열원시스템 선정을 위한 경제성 간이 평가법에 관한 연구)

  • Park Yool;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1060-1067
    • /
    • 2004
  • To apply an analysis method of life cycle cost when assessing economics of equipment system, we should basically set up preconditions such as useful life, price escalation rate, interest rate, etc. as well as consider a calculation algorism of source energy and heat source system, which is a complex process for life cycle costing. For this reason, equipment designers tend to plan heat source systems, without a thorough investigation on economics of alternative systems at the pre-design phase. In this process, architectural designers should adopt a proper heat source system, which is one of the most important factors for planning an appropriate architectural design, through a discussion with equipment designers in a short time. In order to offer an evaluation method for equipment designers to analyze economics of an alternative heat source system easily at the pre-design phase, this research would define the simplified economics, evaluation method through analysis of existing papers for economics evaluation, and examine validity through comparison of simplified method values ($LCC_{EC}$) and life cycle costing values ($LCC_{15}$) for six alternative heat source systems.

Simplified method to design laterally loaded piles with optimum shape and length

  • Fenu, Luigi;Briseghella, Bruno;Marano, Giuseppe Carlo
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

다 span변단면주 산형가구의 실용해에 관한 연구

  • Ham, Seong-Gwon
    • Korean Architects
    • /
    • no.11 s.82
    • /
    • pp.22-25
    • /
    • 1975
  • The aim of this study is the introduction of simplified method for the design stress analysis of multi-span gable frame structures with crane supports. Under the author's assumptions made previously for the same structures of single span, simplified stress analysis and exact computer analysis are excuted for some multi-span sample structures. Comparing the results of both stress analysis and with some modifications, a feasible simplified method for the design stress analysis of multi-span gable frame structures with crane supports is established.

  • PDF

A Study on Simplified Analysis for the Initial Tank Design of Spherical Type LNG Carriers (구형 LNG 운반선의 초기 탱크 설계를 위한 간이해석법 연구)

  • Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.125-134
    • /
    • 2015
  • Spherical type LNG carrier has many advantages, but has a demerit it is more expensive than membrane type one. Therefore, when calculating the initial estimate of spherical type LNG carrier, high accuracy calculation of tank weight has to be carried out. In this study the simplified analysis method which is able to calculate stresses of all the tank zones is established and has special feature to deal with static and dynamic loading. In order to verify the established method, the design results obtained through the method in this study have been compared with those of existing ship obtained from finite element analysis. As a result, the usability of simplified analysis method has been confirmed.

A Study on Optimum Modification of Dynamic Characteristics of Stiffened Plate Using Simplified Equation of Natural Frequency (고유진동수의 간이 추정식을 이용한 보강판 구조물의 동특성의 최적변경에 관한 연구)

  • 박성현;남정길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.48-58
    • /
    • 2002
  • There is a purpose of this study for the proposal of the optimum technique utilized for the vibration design initial step. The stiffened plate structure for the ship hull is made for analysis model. To begin with, dynamic characteristics of stiffened plate structure is analysed using FEM. Main vibrational mode of the structure is decided in the analytical result of FEM. The simplified equation on the natural frequency of the main vibrational mode is induced. Next, sensitivity analysis is carried out using the simplified equation, and rate of change of dynamic characteristics is calculated. Then, amount of design variable is calculated using this sensitivity value and optimum structural modification method. The change of natural frequency is made to be an objective function. Thickness of panel, cross section moment of stiffener and girder become a design variable. The validity of the optimization method using simplified equation is examined. It is shown that the result effective in the optimum modification for natural frequency of the stiffened plate structure.

A simplified method for estimating fundamental periods of pylons in overhead electricity transmission systems

  • Tian, Li;Gao, Guodong;Qu, Bing
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.119-128
    • /
    • 2020
  • In seismic design of a pylon supporting transmission lines in an overhead electricity transmission system, an estimation of the fundamental periods of the pylon in two orthogonal vertical planes is necessary to compute the seismic forces required for sizing pylon members and checking pylon deflections. In current practice, the fundamental periods of a pylon in two orthogonal vertical planes are typically obtained from eigenvalue analyses of a model consisting of the pylon of interest as well as some adjacent pylons and the transmission lines supported by these pylons. Such an approach is onerous and numerically inconvenient. This research focused on development of a simplified method to determine the fundamental periods of pylons. The simplified method is rooted in Rayleigh's quotient and is based on a single-pylon model. The force vectors that can be used to generate the shape vectors required in Rayleigh's quotient are presented in detail. Taking three pylons selected from representative overhead electricity transmission systems having different design parameters as examples, the fundamental periods of the chosen pylons predicted from the simplified method were compared with those from the rigorous eigenvalue analyses. Result comparisons show that the simplified method provides reasonable predictions and it can be used as a convenient surrogate for the tedious approach currently adopted.