• Title/Summary/Keyword: simplified design

Search Result 1,536, Processing Time 0.022 seconds

A method for Simplified and Equivalent Finite Element Modeling Using Optimization Technique (최적화를 이용한 단순 유화 요소 모델링 기법 개발)

  • Lee, Gwang-Won;Seok, Il-U;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2001
  • As computer power is increased, refined finite element models are employed for structural analysis. However, it is difficult and expensive to use refined models in the design stage. The refined models especially cause problems in the preliminary design where the design is frequently changed. Therefore, simplified models are needed. The simplification process is regarded as an empirical technique. Simplified and equivalent finite element model of a structure has been studied and used in the preliminary design. A general approach to establish the simplified and equivalent model is presented. The generated simple model has satisfactory correlation with the corresponding refined finite element model. An optimization method, the Goal Programming algorithm is used to make the simple model. The simplified model is used for the design change and the changed design is recovered onto the original design. The presented method was verified with three examples.

A simplified seismic design method for low-rise dual frame-steel plate shear wall structures

  • Bai, Jiulin;Zhang, Jianyuan;Du, Ke;Jin, Shuangshuang
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.447-462
    • /
    • 2020
  • In this paper, a simplified seismic design method for low-rise dual frame-steel plate shear wall (SPSW) structures is proposed in the framework of performance-based seismic design. The dynamic response of a low-rise structure is mainly dominated by the first-mode and the structural system can be simplified to an equivalent single degree-of-freedom (SDOF) oscillator. The dual frame-SPSW structure was decomposed into a frame system and a SPSW system and they were simplified to an equivalent F-SDOF (SDOF for frame) oscillator and an equivalent S-SDOF (SDOF for SPSW) oscillator, respectively. The analytical models of F-SDOF and S-SDOF oscillators were constructed based on the OpenSees platform. The equivalent SDOF oscillator (D-SDOF, dual SDOF) for the frame-SPSW system was developed by combining the F-SDOF and S-SDOF oscillators in parallel. By employing the lateral force resistance coefficients and seismic demands of D-SDOF oscillator, the design approach of SPSW systems was developed. A 7-story frame-SPSW system was adopted to verify the feasibility and demonstrate the design process of the simplified method. The results also show the seismic demands derived by the equivalent dual SDOF oscillator have a good consistence with that by the frame-SPSW structure.

Simplified design formula of slender concrete filled steel tubular beam-columns

  • Chung, Jinan;Matsui, Chiaki;Tsuda, Keigo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • The objective of this paper is to develop a simplified method that could predict the strength of concrete filled steel tube (CFT) columns applicable to high strength material under combined axial compression and flexure. The simplified method for determining the strength of CFT columns is based on the interaction curve of the section approached by a polygonal connection of the points. These points are determined by using symmetrical properties of the CFT section. For each point, a simple equation is proposed to determine the strength of the slender columns under compression and flexure. The simple equation was adjusted with results of elasto-plastic analysis results. Validation of the simplified method is undertaken by comparison with data from the test conducted at Kyushu University. These results confirm the fact that the simplified method could accurately and reliably predict the strength of CFT columns under combined axial compression and flexure.

Optimum Design of a Center-pillar Model with a Simplified Side Impact Analysis (단순 측면충돌해석에 의한 센터필러의 최적설계)

  • Bae GiHyun;Song JungHan;Huh Hoon;Kim SeHo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.84-92
    • /
    • 2005
  • This paper is concerned with optimum design of a center-pillar assembly induced by the high-speed side impact of the vehicle. In order to simulate deformation behavior of the center-pillar assembly, simplified finite element model of the center-pillar and a moving deformable barrier are developed based on results of the crash analysis of a full vehicle model. In optimization of the deformation shape of the center-pillar, S-shaped deformation is targeted to guarantee reduction of the injury level of a driver dummy in the crash test. Tailor-welded blanks are adopted in the simplified center-pillar model to control the deformation shape of the center-pillar assembly. The thickness of each part which constitutes the simplified model is selected as a design parameter. The thickness of parts which have significant effect on the deformation mechanism are selected as design parameters with sensitivity analysis based on the design of experiment technique. The objective function is constructed so as to minimize the weight and lead to an S-mode deformation shape. The result shows that the simplified model can be utilized effectively for optimum design of the center-pillar members with remarkable saving of computing time.

A Study on the Design Concept and Simplified Analysis Method in Dropped Object Accidents by Lifting Crane (크레인 중량물 낙하사고에 대응한 설계개념과 간이 해석법에 대한 연구)

  • Kim, Ul-Nyeon;Kim, Han-Byul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.251-262
    • /
    • 2019
  • This paper is about design concept and simplified analysis method against dropped object events. The ships and offshore structures are exposed to various types of dropped object accidents such as laydown area struck by drill collar and topside deck hit by food container during their lifetime. Mitigation can be accomplished by proper facility layout and designing structures to safely absorb energy from accidental loads. It shall be designed to avoid loss of life, environmental pollution and loss of assets. Impact loads can lead to structural global collapse of the main structure or punching of a local barrier type structure with potential to escalate directly or indirectly to a global collapse of the structure. This study provides the background information on the issue of dropped object of the shipyard and also focuses on structural assessment of the local individual component such as deck plate, stiffener and web/girder by using simplified analysis method. The results of the simplified analysis method were compared with numerical results using non-linear finite element simulation.

Demonstration of the Effectiveness of Monte Carlo-Based Data Sets with the Simplified Approach for Shielding Design of a Laboratory with the Therapeutic Level Proton Beam

  • Lai, Bo-Lun;Chang, Szu-Li;Sheu, Rong-Jiun
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.50-57
    • /
    • 2022
  • Background: There are several proton therapy facilities in operation or planned in Taiwan, and these facilities are anticipated to not only treat cancer but also provide beam services to the industry or academia. The simplified approach based on the Monte Carlo-based data sets (source terms and attenuation lengths) with the point-source line-of-sight approximation is friendly in the design stage of the proton therapy facilities because it is intuitive and easy to use. The purpose of this study is to expand the Monte Carlo-based data sets to allow the simplified approach to cover the application of proton beams more widely. Materials and Methods: In this work, the MCNP6 Monte Carlo code was used in three simulations to achieve the purpose, including the neutron yield calculation, Monte Carlo-based data sets generation, and dose assessment in simple cases to demonstrate the effectiveness of the generated data sets. Results and Discussion: The consistent comparison of the simplified approach and Monte Carlo simulation results show the effectiveness and advantage of applying the data set to a quick shielding design and conservative dose assessment for proton therapy facilities. Conclusion: This study has expanded the existing Monte Carlo-based data set to allow the simplified approach method to be used for dose assessment or shielding design for beam services in proton therapy facilities. It should be noted that the default model of the MCNP6 is no longer the Bertini model but the CEM (cascade-exciton model), therefore, the results of the simplified approach will be more conservative when it was used to do the double confirmation of the final shielding design.

Evaluation of Design Variants of Drive Mechanisms for a Neck Massager based on a Simplified Criterion (단순화된 기준에 기반한 경추안마기 구동부 설계안의 평가)

  • Park, Jung Hyun;Kim, Kwon Hee;Chae, Soo Won;Cho, Chang Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.83-88
    • /
    • 2015
  • At the early stages of engineering design, a number of design concepts may be suggested. With a great degree of freedom, making a good choice may be a challenge at this stage. In this study, a simplified evaluation criterion for design concepts is presented based on cost, simplicity and safety. Cost is estimated by the amount of materials and the required level of tolerance. Simplicity is represented by the number of parts, assembly steps, and fasteners. Safety is assessed by the level of potential failure. The proposed criterion is applied to an example design of driving mechanisms for cervical vertebrae massage machine.

다 span변단면주 산형가구의 실용해에 관한 연구

  • Ham, Seong-Gwon
    • Korean Architects
    • /
    • no.11 s.82
    • /
    • pp.22-25
    • /
    • 1975
  • The aim of this study is the introduction of simplified method for the design stress analysis of multi-span gable frame structures with crane supports. Under the author's assumptions made previously for the same structures of single span, simplified stress analysis and exact computer analysis are excuted for some multi-span sample structures. Comparing the results of both stress analysis and with some modifications, a feasible simplified method for the design stress analysis of multi-span gable frame structures with crane supports is established.

  • PDF

A simplified design procedure for seismic retrofit of earthquake-damaged RC frames with viscous dampers

  • Weng, D.G.;Zhang, C.;Lu, X.L.;Zeng, S.;Zhang, S.M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.611-631
    • /
    • 2012
  • The passive energy dissipation technology has been proven to be reliable and robust for recent practical applications. Various dampers or energy dissipation devices have been widely used in building structures for enhancing their performances during earthquakes, windstorm and other severe loading scenarios. This paper presents a simplified seismic design procedure for retrofitting earthquake-damaged frames with viscous dampers. With the scheme of designing the main frame and the supplemental viscous dampers respectively, the seismic analysis model of damped structure with viscous dampers and braces was studied. The specific analysis process was described and approach to parameter design of energy dissipation components was also proposed. The expected damping forces for damped frame were first obtained based on storey shear forces; and then they were optimized to meet different storey drift requirements. A retrofit project of a RC frame school building damaged in the 2008 Wenchuan earthquake was introduced as a case study. This building was retrofitted by using viscous dampers designed through the simplified design procedure proposed in this paper. Based on the case study, it is concluded that this simplified design procedure can be effectively used to make seismic retrofit design of earthquake-damaged RC frames with viscous dampers, so as to achieve structural performance objectives under different earthquake risk levels.

A Study on the Simplified Economics Evaluation Method for Selecting a Heat Source System at the Pre-design Phase (초기계획단계에서 열원시스템 선정을 위한 경제성 간이 평가법에 관한 연구)

  • Park Yool;Park Jong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1060-1067
    • /
    • 2004
  • To apply an analysis method of life cycle cost when assessing economics of equipment system, we should basically set up preconditions such as useful life, price escalation rate, interest rate, etc. as well as consider a calculation algorism of source energy and heat source system, which is a complex process for life cycle costing. For this reason, equipment designers tend to plan heat source systems, without a thorough investigation on economics of alternative systems at the pre-design phase. In this process, architectural designers should adopt a proper heat source system, which is one of the most important factors for planning an appropriate architectural design, through a discussion with equipment designers in a short time. In order to offer an evaluation method for equipment designers to analyze economics of an alternative heat source system easily at the pre-design phase, this research would define the simplified economics, evaluation method through analysis of existing papers for economics evaluation, and examine validity through comparison of simplified method values ($LCC_{EC}$) and life cycle costing values ($LCC_{15}$) for six alternative heat source systems.