• Title/Summary/Keyword: simple sequence length polymorphism

Search Result 22, Processing Time 0.028 seconds

Molecular Cloning And analysis of Korean Insulin Gene (한국인 인슈린 유전자의 클로닝 및 분석)

  • 김형민;한상수;고건일;손동환;전창덕;정헌택;김재백
    • YAKHAK HOEJI
    • /
    • v.37 no.5
    • /
    • pp.504-510
    • /
    • 1993
  • Human insulin gene is consisted of the polymorphic region with the repeating units, the regulatory sequence, the structural gene including the intervening sequence, and 3'-flanking region. The polymerase chain reaction, which amplifies the target DNA between two specific primers, has been performed for the amplification of human insulin gene and simple one-step cloning of it into Escherichia coli. Out of 1727 nuceotides compared, only 4 sites were variable: 5'-regulatory region(G2101$\rightarrow$AGG); IVS I(T2401$\rightarrow$A); Exon II(C2411 deletion); IVS II(A2740 dejection). The variations at the G2101 and T2401 were the same as those found in one American allele. The other two variations were observed only in the specific Korean allele. And, the enzyme digestion patterns among normal, insulin dependent diabetes mellitus, and non-insulin dependent diabetes mellitus were the same. On the other hand, PCR method showed the possibility of the quickaccess for the polymorphic region in terms of the restriction fragment length of polymorphism.

  • PDF

Development of Sequence-Based DNA Markers for Evaluation of Phylogenetic Relationships in Korean Watermelon Varieties

  • Lee, Hee-Jeong;Cho, Hwa-Jin;Lee, Kyung-Ah;Lee, Min-Seon;Shin, Yoon-Seob;Harn, Chee-Hark;Yang, Seung-Gyun;Nahm, Seok-Hyeon
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.98-105
    • /
    • 2007
  • Phylogenetic relationships in Korean watermelons were evaluated by genetic similarity coefficients using 15 SSR(simple sequence repeat), 14 SCAR(sequence characterized amplified region) and 14 CAPS(sequence characterized amplified region) markers. The SSR markers were selected from previously reported melon and watermelon SSRs through testing polymorphisms within a set of commercial $F_1$ varieties. The SCAR and CAPS markers were developed from polymorphic AFLP(amplified fragment length polymorphism) markers between inbred lines 'BN4001' and 'BN4002'. From the AFLP analysis, 105 polymorphic fragments were identified between the inbred lines using 1,440 primer combinations of EcoRI+CNNN and XbaI+ANNN. Based on the sequencing data of these polymorphic fragments, we synthesized sequence specific primer pairs and detected clear and reliable polymorphisms in 27 primer pairs by indels(insertion/deletion) or RFLP(restriction fragment length polymorphism). A total of 43 sequence-based PCR markers were obtained and polymorphic information content(PIC) was analyzed to measure the informativeness of each marker in watermelon varieties. The average PIC value of SCAR markers was 0.41, which was similar to that of SSR markers. Genetic diversity was also estimated by using these markers to assess the phylogenetic relationships among commercial varieties of watermelon. These markers differentiated 26 Korean watermelon varieties into two major phylogenetic groups, but this grouping was not significantly correlated with their morphological and physiological characteristics. The mean genetic similarity was 66% within the complete set of 26 commercial varieties. In addition, these sequence-based PCR markers were reliable and useful to identify cultivars and genotypes of watermelon.

  • PDF

Marker Production by PCR Amplification with Primer Pairs from Conserved Sequences of WRKY Genes in Chili Pepper

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Han, Jung-Heon;Yeom, Seon-In;Harn, Chee-Hark;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.196-204
    • /
    • 2008
  • Despite increasing awareness of the importance of WRKY genes in plant defense signaling, the locations of these genes in the Capsicum genome have not been established. To develop WRKY-based markers, primer sequences were deduced from the conserved sequences of the DNA binding motif within the WRKY domains of tomato and pepper genes. These primers were derived from upstream and downstream parts of the conserved sequences of the three WRKY groups. Six primer combinations of each WRKY group were tested for polymorphisms between the mapping parents, C. annuum 'CM334' and C. annuum 'Chilsung-cho'. DNA fragments amplified by primer pairs deduced from WRKY Group II genes revealed high levels of polymorphism. Using 32 primer pairs to amplify upstream and downstream parts of the WRKY domain of WRKY group II genes, 60 polymorphic bands were detected. Polymorphisms were not detected with primer pairs from downstream parts of WRKY group II genes. Half of these primers were subjected to $F_2$ genotyping to construct a linkage map. Thirty of 41 markers were located evenly spaced on 20 of the 28 linkage groups, without clustering. This linkage map also consisted of 199 AFLP and 26 SSR markers. This WRKY-based marker system is a rapid and simple method for generating sequence-specific markers for plant gene families.

Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

  • Kim Ki-Seung;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.5
    • /
    • pp.429-433
    • /
    • 2004
  • A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 $(P=0.0004,\;R^2=14.67\%)$ was more significant than Satt372, previously reported as the most closely linked marker.

Development of a Simple Method to Determine the Mouse Strain from Which Cultured Cell Lines Originated

  • Yoshino, Kaori;Saijo, Kaoru;Noro, Chikako;Nakamura, Yukio
    • Interdisciplinary Bio Central
    • /
    • v.2 no.4
    • /
    • pp.14.1-14.9
    • /
    • 2010
  • Misidentification of cultured cell lines results in the generation of erroneous scientific data. Hence, it is very important to identify and eliminate cell lines with a different origin from that being claimed. Various methods, such as karyotyping and isozyme analysis, can be used to detect inter-species misidentification. However, these methods have proved of little value for identifying intra-species misidentification, and it will only be through the development and application of molecular biological approaches that this will become practical. Recently, the profiling of microsatellite variants has been validated as a means of detecting gene polymorphisms and has proved to be a simple and reliable method for identifying individual cell lines. Currently, the human cell lines provided by cell banks around the world are routinely authenticated by microsatellite polymorphism profiling. Unfortunately, this practice has not been widely adopted for mouse cells lines. Here we show that the profiling of microsatellite variants can be also applied to distinguish the commonly used mouse inbred strains and to determine the strain of origin of cultured cell lines. We found that approximately 4.2% of mouse cell lines have been misidentified; this is a similar rate of misidentification as detected in human cell lines. Although this approach cannot detect intra-strain misidentification, the profiling of microsatellite variants should be routinely carried out for all mouse cell lines to eliminate inter-strain misidentification.

Comparison of Terminal-restriction Fragment Length Polymorphism (T-RFLP) Analysis and Sequencing of 16S rDNA Clones in marine sediments

  • Lee Jung-Hyun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.15-21
    • /
    • 2002
  • Terminal-restriction fragment length polymorphism (T-RFLP) analysis has been optimized by using in vitro model community composed of genomic DNAs of known bacterial strains and has been applied to assess the bacterial community structure in marine sediments. The specific fluorescence-labeled terminal restriction fragments (T-RFs) between 39 and 839 base long specifying each strain were precisely measured for known bacterial strains. The addition of a co-solvent (dimethylsulfoxide or glycerol) into PCR reactions has reduced differential PCR amplification. Comparative bacterial community structure was investigated for pristine and polluted sediments. A complex T-RFLP pattern showing complex bacterial community structure was obtained in the pristine sediment, whereas simple T-RFLP pattern (low bacterial diversity) was shown in polluted sediments where caged aquaculture has been conducted for several years. The results of T-RFLP analysis were compared with that of cloning and sequencing 16S rDNA clones from the same sediments. Sequence analysis of 16S rDNA clones (72) of the pristine sediment revealed a diverse collection of lineages, largely of the class Proteobacteria ($6\%$ alpha subdivision, $46\%$ gamma subdivision, $13\%$ delta subdivision, and $3\%$ epsilon subdivision), Nitrospina $(8\%)$, high G+C gram positive $(8\%)$, Verrucomicrobia $(7\%)$, and Planctomycetes $(6\%)$. In the contaminated sediments, 17 $(59\%)$ of the 16S rDNA clones (29) were related to Campylobacter and symbiont of Rimicaris exoculata belonging to epsilon subdivision of Proteobacteria. The results obtained indicated that T-RFLP analysis is a rapid and precise technique for comparative bacterial community analysis.

  • PDF

Detection and Identification of Mycobacterium Tuberculosis in Patients with Tuberculous Cervical Lymphadenitis by PCR-RFLP (경부 결핵성 임파선염 환자에서 PCR-RELP를 이용한 결핵균의 검출 및 확인)

  • Lee Sang-Sook;Cho Young-Rok;Chun Ji-Min;Choi Yong-Seok;Sohn Eun-Ju;Park Nam-Cho;Park June-Sik
    • Korean Journal of Head & Neck Oncology
    • /
    • v.12 no.2
    • /
    • pp.169-176
    • /
    • 1996
  • Tuberculous cervical lymphadenitis is still an important cause of neck mass in Korea. Tuberculosis is an important differential diagnosis in patients of cervical lymphadenopathy. Rapid and sensitive test for the diagnosis of tuberculosis is essential for the approapiate treatment. Up to now, conventional diagnostic methods for M. tuberculosis were acid-fast bacilli(AFB) stain and culture of M. tuberculosis. The direct microscopic examination of AFB by Ziehl-Neelsen stain is rapid, but often negative. The culture for M. tuberculosis is time-consuming, taking 4 to 8 weeks. Recently various methods to detect Mycobacterial DNA, including PCR and restriction fragment length polymorphism(RFLP) analysis have been reported. Here we represent a simple method for the confirmation of M. tuberculosis and exclusion of the other Mycobacterial species by RFLP analysis and silver staining of polyacrylamide gel electrophoresis after nested PCR for a repetitive DNA sequence(IS986) specific for M. tuberculosis from fresh or paraffin-embedded biopsy specimens. This result leads us to conclude that this method is simple, rapid and possibly applicable to confirm M. tuberculosis and rule out the other Mycobacteria species from the clinical specimens in the clinical laboratories.

  • PDF

Genetic Variation of Rice Populations Estimated Using nrDNA ITS Region Sequence

  • Wang, Dong;Hong, Soon-Kwan
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.249-255
    • /
    • 2014
  • The rice belonging to Oryza sativa is not only has significant economic importance, for it is the major source of nutrition for about 3 billion all around the world. But also plays a vital role as a model organism, because it has a number of advantages to be a model plant, such as efficient transformation system and small genome size. Many methods and techniques have been conducted to attempt to distinguish different Oryza sativa species, such as amplified fragment length polymorphism (AFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) and so on. However, studies using sequence analysis of internal transcribed spacer (ITS), a region of ribosomal RNA has not been reported until now. This study was undertaken with an aim to understand the phylogenetic relationships among sixteen isolates of Oryza sativa collected from abroad and fifteen isolates collected from Korea, using ribosomal RNA (rRNA) internal transcribed spacer (ITS) sequences to compare the phylogeny relationships among different Oryza sativa species. The size variation obtained among sequenced nuclear ribosomal DNA (nrDNA) ITS region ranged from 515bp to 1000bp. The highest interspecific genetic distance (GD) was found between Sfejare 45 (FR12) and Anapuruna (FR15). Taebong isolate showed the least dissimilarity of the ITS region sequence with other thirty isolates. This consequence will help us further understanding molecular diversification in intra-species population and their phylogenetic analysis.

Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng)

  • Jo, Ick Hyun;Kim, Young Chang;Kim, Dong Hwi;Kim, Kee Hong;Hyun, Tae Kyung;Ryu, Hojin;Bang, Kyong Hwan
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.444-449
    • /
    • 2017
  • The development of molecular markers is one of the most useful methods for molecular breeding and marker-based molecular associated selections. Even though there is less information on the reference genome, molecular markers are indispensable tools for determination of genetic variation and identification of species with high levels of accuracy and reproducibility. The demand for molecular approaches for marker-based breeding and genetic discriminations in Panax species has greatly increased in recent times and has been successfully applied for various purposes. However, owing to the existence of diverse molecular techniques and differences in their principles and applications, there should be careful consideration while selecting appropriate marker types. In this review, we outline the recent status of different molecular marker applications in ginseng research and industrial fields. In addition, we discuss the basic principles, requirements, and advantages and disadvantages of the most widely used molecular markers, including restriction fragment length polymorphism, random amplified polymorphic DNA, sequence tag sites, simple sequence repeats, and single nucleotide polymorphisms.

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.