• 제목/요약/키워드: simple recurrent unit

검색결과 12건 처리시간 0.022초

S2-Net: SRU 기반 Self-matching Network를 이용한 한국어 기계 독해 (S2-Net: Korean Machine Reading Comprehension with SRU-based Self-matching Network)

  • 박천음;이창기;홍수린;황이규;유태준;김현기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.35-40
    • /
    • 2017
  • 기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.

  • PDF

S2-Net: SRU 기반 Self-matching Network를 이용한 한국어 기계 독해 (S2-Net: Korean Machine Reading Comprehension with SRU-based Self-matching Network)

  • 박천음;이창기;홍수린;황이규;유태준;김현기
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.35-40
    • /
    • 2017
  • 기계 독해(Machine reading comprehension)는 주어진 문맥을 이해하고, 질문에 적합한 답을 문맥 내에서 찾는 문제이다. Simple Recurrent Unit (SRU)은 Gated Recurrent Unit (GRU)등과 같이 neural gate를 이용하여 Recurrent Neural Network (RNN)에서 발생하는 vanishing gradient problem을 해결하고, gate 입력에서 이전 hidden state를 제거하여 GRU보다 속도를 향상시킨 모델이며, Self-matching Network는 R-Net 모델에서 사용된 것으로, 자기 자신의 RNN sequence에 대하여 어텐션 가중치 (attention weight)를 계산하여 비슷한 의미 문맥 정보를 볼 수 있기 때문에 상호참조해결과 유사한 효과를 볼 수 있다. 본 논문에서는 한국어 기계 독해 데이터 셋을 구축하고, 여러 층의 SRU를 이용한 Encoder에 Self-matching layer를 추가한 $S^2$-Net 모델을 제안한다. 실험 결과, 본 논문에서 제안한 $S^2$-Net 모델이 한국어 기계 독해 데이터 셋에서 EM 65.84%, F1 78.98%의 성능을 보였다.

  • PDF

S2-Net: Machine reading comprehension with SRU-based self-matching networks

  • Park, Cheoneum;Lee, Changki;Hong, Lynn;Hwang, Yigyu;Yoo, Taejoon;Jang, Jaeyong;Hong, Yunki;Bae, Kyung-Hoon;Kim, Hyun-Ki
    • ETRI Journal
    • /
    • 제41권3호
    • /
    • pp.371-382
    • /
    • 2019
  • Machine reading comprehension is the task of understanding a given context and finding the correct response in that context. A simple recurrent unit (SRU) is a model that solves the vanishing gradient problem in a recurrent neural network (RNN) using a neural gate, such as a gated recurrent unit (GRU) and long short-term memory (LSTM); moreover, it removes the previous hidden state from the input gate to improve the speed compared to GRU and LSTM. A self-matching network, used in R-Net, can have a similar effect to coreference resolution because the self-matching network can obtain context information of a similar meaning by calculating the attention weight for its own RNN sequence. In this paper, we construct a dataset for Korean machine reading comprehension and propose an $S^2-Net$ model that adds a self-matching layer to an encoder RNN using multilayer SRU. The experimental results show that the proposed $S^2-Net$ model has performance of single 68.82% EM and 81.25% F1, and ensemble 70.81% EM, 82.48% F1 in the Korean machine reading comprehension test dataset, and has single 71.30% EM and 80.37% F1 and ensemble 73.29% EM and 81.54% F1 performance in the SQuAD dev dataset.

A Review of the Techniques, Current Status and Learning Curves of Laparoscopic Bile Duct Exploration

  • Poh Benjamin Ruimin;Tan Siong San;Lee Lip Seng;Chiow Adrian Kah Heng
    • Journal of Digestive Cancer Research
    • /
    • 제5권1호
    • /
    • pp.37-43
    • /
    • 2017
  • Laparoscopic cholecystectomy is of one the most common general surgical operations performed today. Concomitant choledocholithiasis occurs in roughly 10-20% of patients with symptomatic gallstones. Laparoscopic bile duct exploration (LBDE) offers a single-stage minimally-invasive solution to the management of choledocholithiasis. LBDE may be performed either via the transcystic route or via laparoscopic choledochotomy. A number of strategies to improve success are available to the surgeon to help in the problem of complicated choledocholithiasis, these range from simple maneuvers to the use of laser or mechanical lithotriptors. With the advances in laparoscopic surgery, it is also possible to handle complex surgical conditions such as Mirizzi syndrome or recurrent pyogenic cholangitis laparoscopically, even though these have yet to be accepted as standard of care. Following laparoscopic choledochotomy, options for closure include: primary closure, closure over a T-tube, and closure over an endobiliary stent. T-tube placement has been associated with increased operating time and hospital length of stay compared to primary closure, with no significant differences in morbidity. Based on the available literature, LBDE appears comparable to ERCP with regards to procedural efficacy and morbidity. LBDE remains relevant to the general surgeon and is best viewed as being complementary to endoscopic therapy in the management of choledocholithiasis.

  • PDF

Long-term Outcomes of a Loop Electrosurgical Excision Procedure for Cervical Intraepithelial Neoplasia in a High Incidence Country

  • Sangkarat, Suthi;Ruengkhachorn, Irene;Benjapibal, Mongkol;Laiwejpithaya, Somsak;Wongthiraporn, Weerasak;Rattanachaiyanont, Manee
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.1035-1039
    • /
    • 2014
  • Aim: To evaluate the operative, oncologic and obstetric outcomes of the loop electrosurgical excision procedure (LEEP) in cases with cervical neoplasia. Materials and Methods: A retrospective cohort study was conducted on patients who were suspected of cervical neoplasia and therefore undergoing LEEP at Siriraj Hospital, Mahidol University, Thailand, during 1995-2000. Outcome measures included operative complications in 407 LEEP patients and long-term outcomes in the 248 patients with cervical intraepithelial neoplasia (CIN) who were treated with only LEEP. Results: There were 407 patients undergoing LEEP; their mean age was $39.7{\pm}10.5$ years. The histopathology of LEEP specimens revealed that 89 patients (21.9%) had lesions ${\leq}CIN$ I, 295 patients (72.5%) had CIN II or III, and 23 patients (5.6%) had invasive lesions. Operative complications were found in 15 patients and included bleeding (n=9), and infection (n=7). After diagnostic LEEP, 133 patients underwent hysterectomy as the definite treatment for cervical neoplasia. Of 248 CIN patients who had LEEP only, seven (2.8%) had suffered recurrence after a median of 16 (range 6-93) months; one had CIN I, one had CIN II, and five had CIN III. All of these recurrent patients achieved remission on surgical treatment with re-LEEP (n=6) or simple hysterectomy (n=1). A significant factor affecting recurrent disease was the LEEP margin involved with the lesion (p=0.05). Kaplan-Meier analysis showed 5-year and 10-year disease-free survival (DFS) estimates of 99.9%. Twelve patients became pregnant a total of 14 times, resulting in 12 term deliveries and two miscarriages - one of which was due to an incompetent cervix. Conclusions: LEEP for patients with cervical neoplasia delivers favorable surgical, oncologic and obstetric outcomes.

Analysis of streamflow prediction performance by various deep learning schemes

  • Le, Xuan-Hien;Lee, Giha
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.131-131
    • /
    • 2021
  • Deep learning models, especially those based on long short-term memory (LSTM), have presented their superiority in addressing time series data issues recently. This study aims to comprehensively evaluate the performance of deep learning models that belong to the supervised learning category in streamflow prediction. Therefore, six deep learning models-standard LSTM, standard gated recurrent unit (GRU), stacked LSTM, bidirectional LSTM (BiLSTM), feed-forward neural network (FFNN), and convolutional neural network (CNN) models-were of interest in this study. The Red River system, one of the largest river basins in Vietnam, was adopted as a case study. In addition, deep learning models were designed to forecast flowrate for one- and two-day ahead at Son Tay hydrological station on the Red River using a series of observed flowrate data at seven hydrological stations on three major river branches of the Red River system-Thao River, Da River, and Lo River-as the input data for training, validation, and testing. The comparison results have indicated that the four LSTM-based models exhibit significantly better performance and maintain stability than the FFNN and CNN models. Moreover, LSTM-based models may reach impressive predictions even in the presence of upstream reservoirs and dams. In the case of the stacked LSTM and BiLSTM models, the complexity of these models is not accompanied by performance improvement because their respective performance is not higher than the two standard models (LSTM and GRU). As a result, we realized that in the context of hydrological forecasting problems, simple architectural models such as LSTM and GRU (with one hidden layer) are sufficient to produce highly reliable forecasts while minimizing computation time because of the sequential data nature.

  • PDF

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

Long Short-Term Memory Network for INS Positioning During GNSS Outages: A Preliminary Study on Simple Trajectories

  • Yujin Shin;Cheolmin Lee;Doyeon Jung;Euiho Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.137-147
    • /
    • 2024
  • This paper presents a novel Long Short-Term Memory (LSTM) network architecture for the integration of an Inertial Measurement Unit (IMU) and Global Navigation Satellite Systems (GNSS). The proposed algorithm consists of two independent LSTM networks and the LSTM networks are trained to predict attitudes and velocities from the sequence of IMU measurements and mechanization solutions. In this paper, three GNSS receivers are used to provide Real Time Kinematic (RTK) GNSS attitude and position information of a vehicle, and the information is used as a target output while training the network. The performance of the proposed method was evaluated with both experimental and simulation data using a lowcost IMU and three RTK-GNSS receivers. The test results showed that the proposed LSTM network could improve positioning accuracy by more than 90% compared to the position solutions obtained using a conventional Kalman filter based IMU/GNSS integration for more than 30 seconds of GNSS outages.

Computing machinery techniques for performance prediction of TBM using rock geomechanical data in sedimentary and volcanic formations

  • Hanan Samadi;Arsalan Mahmoodzadeh;Shtwai Alsubai;Abdullah Alqahtani;Abed Alanazi;Ahmed Babeker Elhag
    • Geomechanics and Engineering
    • /
    • 제37권3호
    • /
    • pp.223-241
    • /
    • 2024
  • Evaluating the performance of Tunnel Boring Machines (TBMs) stands as a pivotal juncture in the domain of hard rock mechanized tunneling, essential for achieving both a dependable construction timeline and utilization rate. In this investigation, three advanced artificial neural networks namely, gated recurrent unit (GRU), back propagation neural network (BPNN), and simple recurrent neural network (SRNN) were crafted to prognosticate TBM-rate of penetration (ROP). Drawing from a dataset comprising 1125 data points amassed during the construction of the Alborze Service Tunnel, the study commenced. Initially, five geomechanical parameters were scrutinized for their impact on TBM-ROP efficiency. Subsequent statistical analyses narrowed down the effective parameters to three, including uniaxial compressive strength (UCS), peak slope index (PSI), and Brazilian tensile strength (BTS). Among the methodologies employed, GRU emerged as the most robust model, demonstrating exceptional predictive prowess for TBM-ROP with staggering accuracy metrics on the testing subset (R2 = 0.87, NRMSE = 6.76E-04, MAD = 2.85E-05). The proposed models present viable solutions for analogous ground and TBM tunneling scenarios, particularly beneficial in routes predominantly composed of volcanic and sedimentary rock formations. Leveraging forecasted parameters holds the promise of enhancing both machine efficiency and construction safety within TBM tunneling endeavors.

VS3-NET: Neural variational inference model for machine-reading comprehension

  • Park, Cheoneum;Lee, Changki;Song, Heejun
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.771-781
    • /
    • 2019
  • We propose the VS3-NET model to solve the task of question answering questions with machine-reading comprehension that searches for an appropriate answer in a given context. VS3-NET is a model that trains latent variables for each question using variational inferences based on a model of a simple recurrent unit-based sentences and self-matching networks. The types of questions vary, and the answers depend on the type of question. To perform efficient inference and learning, we introduce neural question-type models to approximate the prior and posterior distributions of the latent variables, and we use these approximated distributions to optimize a reparameterized variational lower bound. The context given in machine-reading comprehension usually comprises several sentences, leading to performance degradation caused by context length. Therefore, we model a hierarchical structure using sentence encoding, in which as the context becomes longer, the performance degrades. Experimental results show that the proposed VS3-NET model has an exact-match score of 76.8% and an F1 score of 84.5% on the SQuAD test set.