• Title/Summary/Keyword: simple multiplier

Search Result 96, Processing Time 0.02 seconds

frequency Domain processor nor ADSL G.LITE Modem (ADSL G.LITE모뎀을 위한 주파수 영역 프로세서의 설계)

  • 고우석;기준석;고태호;윤대희
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12C
    • /
    • pp.233-239
    • /
    • 2001
  • Among the operations in frequency domain for ADSL G.LITE Modem to perform, FFT and FEQ are most computation-intensive part, of which many researches have been focused on the efficient implementation. Previous papers suggested hardwares suitable for ADSL G.DMT system, which is not feasible for simple G.LITE system. The analysis of frequency domain operations and computational efficiency according to the allocation of hardware resources is performed in this paper. The suggested processor has the structure of one real multiplier and two real adders connected in parallel, which can perform the operations efficiently through the pipeline- and/or parallel-type job scheduling. The suggested processor uses less hardware resources than Kiss\`s ALU structure or FFT/IFFT processor suggested by Wang, so the suggested one is more suitable for G.LITE system than previous works.

  • PDF

An Adaptive Decision-Feedback Equalizer Architecture using RB Complex-Number Filter and chip-set design (RB 복소수 필터를 이용한 적응 결정귀환 등화기 구조 및 칩셋 설계)

  • Kim, Ho Ha;An, Byeong Gyu;Sin, Gyeong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.2015-2024
    • /
    • 1999
  • Presented in this paper are a new complex-umber filter architecture, which is suitable for an efficient implementation of baseband signal processing of digital communication systems, and a chip-set design of adaptive decision-feedback equalizer (ADFE) employing the proposed structure. The basic concept behind the approach proposed in this paper is to apply redundant binary (RB) arithmetic instead of conventional 2’s complement arithmetic in order to achieve an efficient realization of complex-number multiplication and accumulation. With the proposed way, an N-tap complex-number filter can be realized using 2N RB multipliers and 2N-2 RB adders, and each filter tap has its critical delay of $T_{m.RB}+T_{a.RB}$ (where $T_{m.RB}, T_{a.RB}$are delays of a RB multiplier and a RB adder, respectively), making the filter structure simple, as well as resulting in enhanced speed by means of reduced arithmetic operations. To demonstrate the proposed idea, a prototype ADFE chip-set, FFEM (Feed-Forward Equalizer Module) and DFEM (Decision-Feedback Equalizer Module) that can be cascaded to implement longer filter taps, has been designed. Each module is composed of two complex-number filter taps with their LMS coefficient update circuits, and contains about 26,000 gates. The chip-set was modeled and verified using COSSAP and VHDL, and synthesized using 0.8- μm SOG (Sea-Of-Gate) cell library.

  • PDF

Design of Format Conversion Filters for MPEG-4 (MPEG-4를 위한 포맷 변환 필터의 설계)

  • Jo, Nam Ik;Kim, Gi Cheol;Yu, Ha Yeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.4
    • /
    • pp.637-637
    • /
    • 1997
  • In this paper, format conversion filters are proposed, which have advantages in hardware implementation compared to the ones proposed in MPEG-4 Video Verification Model. since each coefficients of the proposed filters is constrained to have less than two non-zero digits in minimal signed digit representation, multiplication of input and the coefficient can be implemented by a single adder. As a result, the proposed filters have advantages in hardware complexity and speed, compared to the filters which are usually implemented by integer multiplier or carry save adders. Six kinds of filters are proposed in MPEG-4 Video Verification Model for size conversion of 2:1, 4:1, 5:3 and 5:6. We design 5 filters for the same purpose and compare the performance. The remaining one is very simple to implement. For comparing the filtering performance, we first compare the results of sine wave frequency conversion as an indirect but meaningful comparison. Second. We compute the PSNR of the images obtained from the proposed filters and the ones proposed by MPEG, with reference to the images obtained by using double precision arithmetic and high order filter. The results show that the performance of the proposed filters is almost the same as that of the filters proposed by MPEG. In conclusion, the peroformance of the proposed filters is comparable to that of the ones in MPEG-4, while requiring lower hardware complexity and providing high operating speed.

90/150 RCA Corresponding to Maximum Weight Polynomial with degree 2n (2n 차 최대무게 다항식에 대응하는 90/150 RCA)

  • Choi, Un-Sook;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.819-826
    • /
    • 2018
  • The generalized Hamming weight is one of the important parameters of the linear code. It determines the performance of the code when the linear codes are applied to a cryptographic system. In addition, when the block code is decoded by soft decision using the lattice diagram, it becomes a measure for evaluating the state complexity required for the implementation. In particular, a bit-parallel multiplier on finite fields based on trinomials have been studied. Cellular automata(CA) has superior randomness over LFSR due to its ability to update its state simultaneously by local interaction. In this paper, we deal with the efficient synthesis of the pseudo random number generator, which is one of the important factors in the design of effective cryptosystem. We analyze the property of the characteristic polynomial of the simple 90/150 transition rule block, and propose a synthesis algorithm of the reversible 90/150 CA corresponding to the trinomials $x^2^n+x^{2^n-1}+1$($n{\geq}2$) and the 90/150 reversible CA(RCA) corresponding to the maximum weight polynomial with $2^n$ degree by using this rule block.

Design and Performance Evaluation of Small Size Counting and Imaging Gamma Probe System (소형 계수용 및 영상용 감마프로브 시스템의 설계와 성능평가)

  • Yang, Myo-Geun;Kwark, Cheol-Eun;Sim, yong-Geol;Kim, Hee-Joung;Choi, Yong;Chung, Jung-Key;Lee, Myung-Chul;Koh, Chang-Soon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.291-299
    • /
    • 1997
  • As a microimaging device detecting gamma rays emitted from small lesions or tumors during operation, the intraoperative surgical probe has been proposed and is now under development. We have designed a multipurpose portable gamma prove system and evaluated the performance both for the absolute counting purpose of residual radioactivities and for the localizing capability of gamma events using the NaI(Tl) crystal and two types of photomultiplier tubes(PMTs). Counting efficiencies in the range of routine clinical use of radiation dose were measured using the assembly of single channel PMTs and 0.5 inch thick NaI(Tl) crystal of 1 inch diameter. The positioning of gamma events for imaging purpose requires the multiple channel PMTs with appropriate positioning electronics. We have designed a simple and reliable positioning circuit based on the concept of modified Anger. In preliminary experiments using the multiple channel PMT of 3 inch diameter and the dim lighth source, we were able to trace and localize the correct position with reduced positioning error by the use of two multiplier/divider chipset and simplified peripherals. The energy resolutions for the counting gamma probe measured as full width at half maximum(FWHM) for Cs-137, F-18, Tc-99m were 12%, 13%, and 36%, respectively. The spatial resolution for the imaging gamma probe measured as FWHM for green LED was 2.9 mm. The results indicate that the currently developing probe is very promising and could be very useful for many applications in nuclear medicine. Future studies will include developing collimators, improving interface hardwares, and evaluating the system with clinical data.

  • PDF

Timing Driven Analytic Placement for FPGAs (타이밍 구동 FPGA 분석적 배치)

  • Kim, Kyosun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.7
    • /
    • pp.21-28
    • /
    • 2017
  • Practical models for FPGA architectures which include performance- and/or density-enhancing components such as carry chains, wide function multiplexers, and memory/multiplier blocks are being applied to academic FPGA placement tools which used to rely on simple imaginary models. Previously the techniques such as pre-packing and multi-layer density analysis are proposed to remedy issues related to such practical models, and the wire length is effectively minimized during initial analytic placement. Since timing should be optimized rather than wire length, most previous work takes into account the timing constraints. However, instead of the initial analytic placement, the timing-driven techniques are mostly applied to subsequent steps such as placement legalization and iterative improvement. This paper incorporates the timing driven techniques, which check if the placement meets the timing constraints given in the standard SDC format, and minimize the detected violations, with the existing analytic placer which implements pre-packing and multi-layer density analysis. First of all, a static timing analyzer has been used to check the timing of the wire-length minimized placement results. In order to minimize the detected violations, a function to minimize the largest arrival time at end points is added to the objective function of the analytic placer. Since each clock has a different period, the function is proposed to be evaluated for each clock, and added to the objective function. Since this function can unnecessarily reduce the unviolated paths, a new function which calculates and minimizes the largest negative slack at end points is also proposed, and compared. Since the existing legalization which is non-timing driven is used before the timing analysis, any improvement on timing is entirely due to the functions added to the objective function. The experiments on twelve industrial examples show that the minimum arrival time function improves the worst negative slack by 15% on average whereas the minimum worst negative slack function improves the negative slacks by additional 6% on average.