• Title/Summary/Keyword: simple joint method

Search Result 233, Processing Time 0.031 seconds

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Calculation of stress intensity factor considering out-of-plane bending for a patched crack with finite thickness (유한두께를 가지는 보강된 균열평판에 대한 면외굽힘을 고려한 응력강도계수 계산)

  • Kim, Jong-Ho;Lee, Soon-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.165-169
    • /
    • 2000
  • A simple method was suggested to calculate the stress intensity factor for a one-sided patched crack with finite thickness. To consider out-of-plane bending effect resulting from the load-path eccentricity, the spring constant as a function of the through-thickness coordinate z was calculated from the stress distribution in the un-cracked plate, ${\sigma}_{yy}(y=0,\;z)$, and the displacement for the representative single strip Joint, $u_y(y=0,\;z)$. The stress Intensity factors were obtained using Rose's asymptotic solution approach and compared with the finite element results. In short crack region, two results had a little difference. However, two results were almost same in long crack region. On the other hand, the stress intensity factor using plane stress assumption was more similar to finite element result than plane strain condition.

  • PDF

Design of a real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로봇의 실시간 적응제어기 설계)

  • 최근국
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.154-161
    • /
    • 1999
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Appearance-based Robot Visual Servo via a Wavelet Neural Network

  • Zhao, Qingjie;Sun, Zengqi;Sun, Fuchun;Zhu, Jihong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.607-612
    • /
    • 2008
  • This paper proposes a robot visual servo approach based on image appearance and a wavelet function neural network. The inputs of the wavelet neural network are changes of image features or the elements of image appearance vector, and the outputs are changes of robot joint angles. Image appearance vector is calculated by using eigen subspace transform algorithm. The proposed approach does not need a priori knowledge of the robot kinematics, hand-eye geometry and camera models. The experiment results on a real robot system show that the proposed method is practical and simple.

A Study on the Real Time Adaptive Controller for SCARA Robot Using TMS320C31 Chip (TMS320C31 칩을 사용한 스카라 로봇의 실시간 적응제어데 관한 연구)

  • 김용태
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.03a
    • /
    • pp.79-84
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C31) for robotic manipulators to achieve trajectory tracking by the joint angles. Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme, adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller, feedback controller, and PID type time-varying auxillary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Design of a Real Time Adaptive Controller for Industrial Robot Using Digital Signal Processor (디지털 신호처리기를 사용한 산업용 로버트의 실시간 적응제어기 설계)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.26-37
    • /
    • 1996
  • This paper presents a new approach to the design of adaptive control system using DSPs(TMS320C30) for robotic manipulators to achieve trajectory tracking by the joint angles Digital signal processors are used in implementing real time adaptive control algorithms to provide an enhanced motion control for robotic manipulators. In the proposed control scheme adaptation laws are derived from the improved Lyapunov second stability analysis method based on the adaptive model reference control theory. The adaptive controller consists of an adaptive feedforward controller. feedback controller. and PID type time-varying auxiliary control elements. The proposed adaptive control scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Moreover, this scheme does not require a an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by simulation and experimental results for a SCARA robot.

  • PDF

Designing walking robot using Theo Jansen Mechanism (Theo Janson Mechanism 을 이용한 보행 로봇 설계)

  • Lee, Byeongcheol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF

Theoretical Approach to Welding Out-of Plane Oeformations in Thin Plate Structures (박판구조물의 용접 면외변형에 대한 이론 해석적 접근)

  • Seo, Sung-Il
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.5 s.143
    • /
    • pp.466-471
    • /
    • 2005
  • The out-of-plane deformation in thin plate structure has been a serious qualify problem. It has been known that the out-of-plane deformation is caused by the angular deformation of welded joint. However, experimental results show that the conventional theory based on angular deformation is not appropriate for prediction of the out-of-plane deformation in thin plate structure. In this study, large deformation plate theory is introduced to clarify the effect of residual stress on the out-of-plane deformation. A simple equation is proposed to predict the out-of-plane deformation. The results by the proposed method show good agreement with the experimental results.

A comparative study on keypoint detection for developmental dysplasia of hip diagnosis using deep learning models in X-ray and ultrasound images (X-ray 및 초음파 영상을 활용한 고관절 이형성증 진단을 위한 특징점 검출 딥러닝 모델 비교 연구)

  • Sung-Hyun Kim;Kyungsu Lee;Si-Wook Lee;Jin Ho Chang;Jae Youn Hwang;Jihun Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.460-468
    • /
    • 2023
  • Developmental Dysplasia of the Hip (DDH) is a pathological condition commonly occurring during the growth phase of infants. It acts as one of the factors that can disrupt an infant's growth and trigger potential complications. Therefore, it is critically important to detect and treat this condition early. The traditional diagnostic methods for DDH involve palpation techniques and diagnosis methods based on the detection of keypoints in the hip joint using X-ray or ultrasound imaging. However, there exist limitations in objectivity and productivity during keypoint detection in the hip joint. This study proposes a deep learning model-based keypoint detection method using X-ray and ultrasound imaging and analyzes the performance of keypoint detection using various deep learning models. Additionally, the study introduces and evaluates various data augmentation techniques to compensate the lack of medical data. This research demonstrated the highest keypoint detection performance when applying the residual network 152 (ResNet152) model with simple & complex augmentation techniques, with average Object Keypoint Similarity (OKS) of approximately 95.33 % and 81.21 % in X-ray and ultrasound images, respectively. These results demonstrate that the application of deep learning models to ultrasound and X-ray images to detect the keypoints in the hip joint could enhance the objectivity and productivity in DDH diagnosis.

Arthritis on Temporomandibular Joint in Rabbit by Collagenase Injection (가토의 하악관절에 Collagenase 주입을 통한 관절염 유발 모델에 관한 연구)

  • Song, Dong-Seok;Kim, Ki-Hyun;Lee, Jae-Yeol;Jung, Eu-Gene;Ahn, Sang-Wook;Song, Jin-Woo;Kim, Chul-Hun;Shin, Sang-Hun;Chung, In-Kyo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.6
    • /
    • pp.497-503
    • /
    • 2010
  • Purpose: The purpose of this study is to induce artificial arthritis on rabbit TMJ by injecting collagenase. Materials and Methods: An experimental animal model of arthritis induced by surgical method or intraarticular injection of chemical agent like LDH, papain, ketorolac. Surgical method is complex and needs a long time in inducing arthritis. Intra-articular injection of chemical agent like LDH, papain, ketorolac is simple. But chemical agent like LDH, papain, ketololac needs multiple injections to induce arthritis and mechanism inducing arthritis was known. Collagenase destroys helical domain of type II collagen in extracellular matrix produced by chondrocyte and then induces arthritis. We injected collagenase (0.5, 1.0, 2.0 mg) into the temporomandibular joint of rabbit. In the control group saline was intra-articularly injected. The condylar cartilage, disk and synovia were histologically examined at 1, 2, 4, 6 weeks after the initiation of collagenase injections. Results: Four weeks after injection of 2.0 mg collagenase, we could see histologic change like arthritis. In other groups, we couldn't see arthritis-like change. Conclusion: In our study, we produce arthritis on temporomandibular joint of rabbit by using injection of collagenase in temporomandibular joint of rabbit. And this experimental osteoarthritis is a useful animal model.