• Title/Summary/Keyword: similarity-based estimation

Search Result 145, Processing Time 0.026 seconds

Improving the Accuracy of Early Stage Cost Estimation in Apartment Construction Project (공동주택 프로젝트의 초기 공사비 예측정확도 향상에 관한 연구)

  • Lim, So-Yean;Yeo, Sang-Gu;Go, Seong-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.143-147
    • /
    • 2010
  • Due to the diversification and complication of construction projects, controlling risks from the early design-planning phase gives huge impact on success of the construction project. As a part of managing uncertainties it is also important to estimate the project cost several times. Especially, estimating project cost in the early stage gives effects on making a budget for projects. This study estimated the apartment project cost using case-based reasoning(CBR), which is the process of solving new problems based on the past problems. For this, we deduced the apartment cost influence factors which can be gathered in the early stage of project. Based on the factors we established the database for apartment project and calculated the attribute value, attribute similarity and case similarity. Although we retrieve the most similar case from the database, it is very hard to utilize it directly due to the uniqueness of each project. So, Genetic Algorithm(GA) was applied in revising the cost of the retrieved-case. Therefore, the accuracy of the prediction was improved by GA optimization.

  • PDF

Clustering of Decision Making Units using DEA (DEA를 이용한 의사결정단위의 클러스터링)

  • Kim, Kyeongtaek
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.4
    • /
    • pp.239-244
    • /
    • 2014
  • The conventional clustering approaches are mostly based on minimizing total dissimilarity of input and output. However, the clustering approach may not be helpful in some cases of clustering decision making units (DMUs) with production feature converting multiple inputs into multiple outputs because it does not care converting functions. Data envelopment analysis (DEA) has been widely applied for efficiency estimation of such DMUs since it has non-parametric characteristics. We propose a new clustering method to identify groups of DMUs that are similar in terms of their input-output profiles. A real world example is given to explain the use and effectiveness of the proposed method. And we calculate similarity value between its result and the result of a conventional clustering method applied to the example. After the efficiency value was added to input of K-means algorithm, we calculate new similarity value and compare it with the previous one.

A Rating Range-based Prediction Method for Collaborative Filtering Systems (협력필터링 시스템을 위한 평가 등급 범위 기반의 예측방법)

  • Lee, Soo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.4
    • /
    • pp.63-70
    • /
    • 2011
  • Recommender systems, which predict and recommend items that may possibly draw users' interests, have been applied in various fields as e-commerce systems are widespread. Collaborative filtering, one of the major methodologies of recommender systems, recommends either items similar to those preferred by the user, or items preferred by the other similar user. Therefore, two problems determine its performance; one is correct estimation of similarity and the other is predicting the real rating of the recommended item. This study addresses the latter problem. Previous studies predict the real rating based on the mean of the ratings, but this study proposes a prediction based on the range of the ratings and investigates its performance through experiments. As a result, it is demonstrated that the proposed method improves the mean absolute error significantly, compared to the previous method.

  • PDF

A STUDY ON THE DEVELOPMENT OF A COST MODEL BASED ON THE OWNER'S DECISION MAKING AT THE EARLY STAGES OF A CONSTRUCTION PROJECT

  • Choong-Wan Koo;Sang H. Park;Joon-oh Seo;TaeHoon Hong;ChangTaek Hyun
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.676-684
    • /
    • 2009
  • Decision making at the early stages of a construction project has a significant impact on the project, and various scenarios created based on the owner's requirements should be considered for the decision making. At the early stages of a construction project, the information regarding the project is usually limited and uncertain. As such, it is difficult to plan and manage the project (especially cost planning). Thus, in this study, a cost model that could be varied according to the owner's requirements was developed. The cost model that was developed in this study is based on the case-based reasoning (CBR) methodology. The model suggests cost estimation with the most similar historical case as a basis for the estimation. In this study, the optimization process was also conducted, using genetic algorithms that reflect the changes in the number of project characteristics and in the database in the model according to the owner's decision making. Two optimization parameters were established: (1) the minimum criteria for scoring attribute similarity (MCAS); and (2) the range of attribute weights (RAW). The cost model proposed in this study can help building owners and managers estimate the project budget at the business planning stage.

  • PDF

An Effective Estimation method for Lexical Probabilities in Korean Lexical Disambiguation (한국어 어휘 중의성 해소에서 어휘 확률에 대한 효과적인 평가 방법)

  • Lee, Ha-Gyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.6
    • /
    • pp.1588-1597
    • /
    • 1996
  • This paper describes an estimation method for lexical probabilities in Korean lexical disambiguation. In the stochastic to lexical disambiguation lexical probabilities and contextual probabilities are generally estimated on the basis of statistical data extracted form corpora. It is desirable to apply lexical probabilities in terms of word phrases for Korean because sentences are spaced in the unit of word phrase. However, Korean word phrases are so multiform that there are more or less chances that lexical probabilities cannot be estimated directly in terms of word phrases though fairly large corpora are used. To overcome this problem, similarity for word phrases is defined from the lexical analysis point of view in this research and an estimation method for Korean lexical probabilities based on the similarity is proposed. In this method, when a lexical probability for a word phrase cannot be estimated directly, it is estimated indirectly through the word phrase similar to the given one. Experimental results show that the proposed approach is effective for Korean lexical disambiguation.

  • PDF

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.

An Exploratory Study of Collective E-Petitions Estimation Methodology Using Anomaly Detection: Focusing on the Voice of Citizens of Changwon City (이상탐지 활용 전자집단민원 추정 방법론에 관한 탐색적 연구: 창원시 시민의 소리 사례를 중심으로)

  • Jeong, Ha-Yeong
    • Informatization Policy
    • /
    • v.26 no.4
    • /
    • pp.85-106
    • /
    • 2019
  • Recently, there have been increasing cases of collective petitions filed in the electronic petitions system. However, there is no efficient management system, raising concerns on side effects such as increased administrative workload and mass production of social conflicts. Aimed at suggesting a methodology for estimating electronic collective petitions using anomaly detection and corpus linguistics-based content analysis, this study conducted the followings: i) a theoretical review of the concept of collective petitions, ii) estimation of electronic collective petitions using anomaly detection based on nonparametric unsupervised learning, iii) a content similarity analysis on petitions using n-gram cosine angle distance, and iv) a case study on the Voice of Citizens of Changwon City, through which the utility of the proposed methodology, policy implications and future tasks were reviewed.

Estimation of Tire-Road Friction Coefficient using Observers (관측기를 이용한 노면과 타이어 간의 마찰계수 추정)

  • 정태영;이경수;송철기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

Search Range Reduction Algorithm with Motion Vectors of Upper Blocks for HEVC (상위 블록 움직임 벡터를 이용한 HEVC 움직임 예측 탐색 범위 감소 기법)

  • Lee, Kyujoong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • In High Efficiency Video Coding (HEVC), integer motion estimation (IME) requires a large amount of computational complexity because HEVC adopts the high flexible and hierarchical coding structures. In order to reduce the computational complexity of IME, this paper proposes the search range reduction algorithm, which takes advantage of motion vectors similarity between different layers. It needs only a few modification for HEVC reference software. Based on the experimental results, the proposed algorithm reduces the processing time of IME by 28.1% on average, whereas its the $Bj{\emptyset}ntegaard$ delta bitrate (BD-BR) increase is 0.15% which is negligible.

Facial Feature Tracking and Head Orientation-based Gaze Tracking

  • Ko, Jong-Gook;Kim, Kyungnam;Park, Seung-Ho;Kim, Jin-Young;Kim, Ki-Jung;Kim, Jung-Nyo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.11-14
    • /
    • 2000
  • In this paper, we propose a fast and practical head pose estimation scheme fur eye-head controlled human computer interface with non-constrained background. The method we propose uses complete graph matching from thresholded images and the two blocks showing the greatest similarity are selected as eyes, we also locate mouth and nostrils in turn using the eye location information and size information. The average computing time of the image(360*240) is within 0.2(sec) and we employ template matching method using angles between facial features for head pose estimation. It has been tested on several sequential facial images with different illuminating conditions and varied head poses, It returned quite a satisfactory performance in both speed and accuracy.

  • PDF