• 제목/요약/키워드: similarity learning

검색결과 499건 처리시간 0.025초

대수 문장제를 해결하고 일반화하는 과정에서 드러난 두 중학생의 공변 추론 수준 비교 (Comparison of the Covariational Reasoning Levels of Two Middle School Students Revealed in the Process of Solving and Generalizing Algebra Word Problems)

  • 마민영
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권4호
    • /
    • pp.569-590
    • /
    • 2023
  • 본 사례 연구의 목적은 대수 문장제를 해결하고 일반화하는 과정에서 드러난 두 중학생의 공변 추론 수준을 비교하여 분석하는 것이다. 학교 수학에서 이차방정식을 학습하지 않은 중학생 2명을 대상으로 수업을 진행하였고, 수업이 모두 끝난 뒤 회고 분석 과정에서 속도가 일정하게 변하는 상황을 포함한 대수 문장제의 해결에서 두 학생 간의 차이가 두드러지게 드러났다. 이에 본 연구는 속도의 일정함을 가정하거나 속도가 일정하게 변하는 상황을 포함한 대수 문장제를 해결하거나 일반화하는 과정에서 학생들 스스로 구성한 두 변수에 대해 그들 사이의 변화 관계에 대한 이해 수준을 Thompson과 Carlson(2017)이 제안한 공변 추론 수준에 비추어 비교·분석하였다. 그 결과, 본 연구에서는 대수 문장제의 문제 해결 방식과 그 결과가 표면적으로 유사해 보이더라도 두 학생 간의 공변 추론 수준이 서로 다를 수 있음을 확인하였고, 대수 문장제를 해결하고 일반화하는 과정에서 드러난 유사성을 공변 관점에서 제시하였다. 이를 통해 본 연구는 대수 문장제의 교수·학습에서 문제 상황을 빠르게 식으로 변환하여 해를 찾는 데 주목하기보다 학생 스스로 변화하는 두 양을 찾고 그들 사이의 불변하는 관계를 다양한 방식으로 나타내는 활동이 충분히 다루어질 필요가 있음을 제안한다.

낙동강권역의 지하수 산출 유망도 평가 (A Groundwater Potential Map for the Nakdonggang River Basin)

  • 유순영;정재훈;박길택;문희선;석희준;김용철;고동찬;고경석;김형찬;문상호;신제현;심병완;최한나;하규철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제28권6호
    • /
    • pp.71-89
    • /
    • 2023
  • A groundwater potential map (GPM) was built for the Nakdonggang River Basin based on ten variables, including hydrogeologic unit, fault-line density, depth to groundwater, distance to surface water, lineament density, slope, stream drainage density, soil drainage, land cover, and annual rainfall. To integrate the thematic layers for GPM, the criteria were first weighted using the Analytic Hierarchical Process (AHP) and then overlaid using the Technique for Ordering Preferences by Similarity to Ideal Solution (TOPSIS) model. Finally, the groundwater potential was categorized into five classes (very high (VH), high (H), moderate (M), low (L), very low (VL)) and verified by examining the specific capacity of individual wells on each class. The wells in the area categorized as VH showed the highest median specific capacity (5.2 m3/day/m), while the wells with specific capacity < 1.39 m3/day/m were distributed in the areas categorized as L or VL. The accuracy of GPM generated in the work looked acceptable, although the specific capacity data were not enough to verify GPM in the studied large watershed. To create GPMs for the determination of high-yield well locations, the resolution and reliability of thematic maps should be improved. Criterion values for groundwater potential should be established when machine learning or statistical models are used in the GPM evaluation process.

A Study on the Intelligent Online Judging System Using User-Based Collaborative Filtering

  • Hyun Woo Kim;Hye Jin Yun;Kwihoon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.273-285
    • /
    • 2024
  • 교육 분야에서 온라인 저지 시스템이 활발하게 활용됨에 따라 학습자 데이터를 활용하는 다양한 연구가 진행되고 있다. 본 연구에서는 학습자 데이터를 활용하여 학습자의 문제 선택을 지원할 수 있는 사용자 기반 협업 필터링 방식의 문제추천 기능을 제안한다. 온라인 저지 시스템에서 학습자의 문제 선택을 위한 지원은 그들의 향후 학습에 영향을 미치므로 교육의 효과성 제고를 위해 필요하다. 이를 위해 학습자의 문제풀이 성향과 유사한 학습자를 식별하고 그들의 문제풀이 이력을 활용한다. 제안 기능은 충북교육연구정보원에서 운영하는 알고리즘과 프로그래밍 관련 온라인 저지 사이트에 구현됐고, 서비스 유용성과 사용 편이성 측면에서 델파이 기법을 통한 전문가 검토를 수행했다. 또한 사이트 사용자 대상 시범 운영에서 바른코드 제출 비율을 분석한 결과 추천문제에 대해 제출한 경우가 전체 제출에 비해 16% 정도 높았고, 추천문제 사용자 대상 설문조사에서 '도움 된다' 응답은 78%였다. 시범 운영에서는 추천문제 선택과 사용자 피드백 관련 설문 응답 비율이 낮았으므로, 향후 연구과제로 제안 기능의 접근성 향상, 사용자 피드백 수집 및 학습자 데이터 분석 다각화 등을 제시했다.

탄성파 속성 분석을 위한 탄성파 자료 무작위 잡음 제거 연구 (Study on the Seismic Random Noise Attenuation for the Seismic Attribute Analysis)

  • 원종필;신정균;하지호;전형구
    • 자원환경지질
    • /
    • 제57권1호
    • /
    • pp.51-71
    • /
    • 2024
  • 탄성파 탐사는 지하자원 개발, 지반 조사, 지층 모니터링 등에 널리 사용되고 있는 지구물리탐사 방법으로 정확한 지층 구조 영상을 제공해주기 때문에 지층의 지질학적 특성 해석에 필수적으로 활용된다. 일반적으로는 탄성파 구조 보정 영상을 시각적으로 분석하여 지질학적 특성을 해석하지만 최근에는 탄성파 구조 보정 자료에 대한 정량적인 분석을 통해 원하는 지질학적 특성을 정확하게 추출하고 해석하는 탄성파 속성 분석이 널리 연구되고 있다. 탄성파 속성 분석은 탄성파 자료에 기반한 지질학적 해석에 정량적인 근거를 제시해줄 수 있기 때문에 석유 및 가스 저류층 분석, 단층 및 균열대 조사, 지층 가스 분포 파악 등의 다양한 분야에서 활용되고 있다. 하지만 탄성파 속성 분석은 탄성파 자료 내 잡음에 취약하므로 속성 분석의 정확도 향상을 위해서는 중합 후 탄성파 자료에 대한 추가적인 잡음 제거가 수반되어야 한다. 본 연구에서는 중합 후 탄성파 자료에 대한 무작위 잡음 제거 및 및 탄성파 속성 분석 정확도 개선을 위해 4가지의 잡음 제거 방법을 적용하고 비교한다. FX 디콘볼루션, DSMF, Noise2Noiose, DnCNN을 각각 포항 영일만 고해상 탄성파 자료에 적용하여 탄성파 무작위 잡음을 제거하고 잡음이 제거된 탄성파 자료로부터 에너지, 스위트니스, 유사도 속성을 계산한다. 그리고 각 잡음 제거 방법의 특성, 잡음 제거 결과, 탄성파 속성 분석 결과를 정성적 및 정량적으로 분석한 후, 이를 기반으로 탄성파 속성 분석 결과 향상을 위한 최적의 잡음 제거 방법을 제안한다.

국방 빅데이터/인공지능 활성화를 위한 다중메타데이터 저장소 관리시스템(MRMM) 기술 연구 (A Research in Applying Big Data and Artificial Intelligence on Defense Metadata using Multi Repository Meta-Data Management (MRMM))

  • 신우택;이진희;김정우;신동선;이영상;황승호
    • 인터넷정보학회논문지
    • /
    • 제21권1호
    • /
    • pp.169-178
    • /
    • 2020
  • 국방부는 감소되는 부대 및 병력자원의 문제해결과 전투력 향상을 위해 4차 산업혁명 기술(빅데이터, AI)의 적극적인 도입을 추진하고 있다. 국방 정보시스템은 업무 영역 및 각군의 특수성에 맞춰 다양하게 개발되어 왔으며, 4차 산업혁명 기술을 적극 활용하기 위해서는 현재 폐쇄적으로 운용하고 있는 국방 데이터 관리체계의 개선이 필요하다. 그러나, 국방 빅데이터 및 인공지능 도입을 위해 전 정보시스템에 데이터 표준을 제정하여 활용하는 것은 보안문제, 각군 업무특성 및 대규모 체계의 표준화 어려움 등으로 제한사항이 있고, 현 국방 데이터 공유체계 제도적으로도 각 체계 상호간 연동 소요를 기반으로 체계간 연동합의를 통해 직접 연동을 통하여 데이터를 제한적으로 공유하고 있는 실정이다. 4차 산업혁명 기술을 적용한 스마트 국방을 구현하기 위해서는 국방 데이터를 공유하여 잘 활용할 수 있는 제도마련이 시급하고, 이를 기술적으로 뒷받침하기 위해 국방상호운용성 관리지침 규정에 따라 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 국방 데이터의 체계적인 표준 관리를 지원하는 다중 데이터 저장소 관리(MRMM) 기술개발이 필요하다. 본 연구에서는 스마트 국방 구현을 위해 가장 기본이 되는 국방 데이터의 도메인 및 코드사전을 생성된 국방 전사 표준과 각 체계별 표준 매핑을 관리하고, 표준간 연계를 통하여 데이터 상호 운용성 증진을 지원하는 다중 데이터 저장소 관리 (MRMM) 기술을 제시하고, 단어의 유사도를 통해 MRMM의 실현 방향성을 구현하였다. MRMM을 바탕으로 전군 DB의 표준화 통합을 좀 더 간편하게 하여 실효성 있는 국방 빅데이터 및 인공지능 데이터 구현환경을 제공하여, 스마트 국방 구현을 위한 막대한 국방예산 절감과 전투력 향상을 위한 전력화 소요기간의 감소를 기대할 수 있다.

GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템 (GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information)

  • 이태범;이승학;마민정;조윤호
    • 지능정보연구
    • /
    • 제29권3호
    • /
    • pp.167-183
    • /
    • 2023
  • 최근 추천시스템 분야에서는 희소한 데이터를 효과적으로 모델링하기 위한 다양한 연구가 진행되고 있다. GLocal-K(Global and Local Kernels for Recommender Systems)는 그중 하나의 연구로 전역 커널과 지역 커널을 결합하여 데이터의 전역적인 패턴과 개별 사용자의 특성을 모두 고려해 사용자 맞춤형 추천을 제공하는 모델이다. 하지만 GLocal-K는 커널 트릭을 사용하기 때문에 매우 희소한 데이터에서 성능이 떨어지고 부가 정보를 사용하지 않아 새로운 사용자나 아이템에 대한 추천을 제공하는 데 어려움이 있다. 본 논문에서는 이러한 GLocal-K의 단점을 극복하기 위해 EASE(Embarrassingly Shallow Autoencoders for Sparse Data) 모델과 부가 정보를 활용한 GEase-K(Global and EASE kernels for Recommender Systems) 모델을 제안한다. 우선 GLocal-K의 지역 커널 대신 EASE를 활용하여 매우 희소한 데이터에서 추천 성능을 높이고자 하였다. EASE는 단순한 선형 연산 구조로 이루어져 있지만, 규제화와 아이템 간 유사도 학습을 통해 매우 희소한 데이터에서 높은 성능을 내는 오토인코더이다. 다음으로 Cold Start 완화를 위해 부가 정보를 활용하였다. 학습 과정에서 부가 정보를 추가하기 위해 조건부 오토인코더 구조를 적용하였으며 이를 통해 사용자-아이템 간의 유사성을 더 잘 파악할 수 있도록 하였다. 결론적으로 GEase-K는 선형 구조와 비선형 구조의 결합, 부가 정보의 활용을 통해 매우 희소한 데이터와 Cold Start 상황에서 강건한 모습을 보인다. 실험 결과, GEase-K는 매우 희소한 GoodReads, ModCloth 데이터 세트에서 RMSE, MAE 평가 지표 기준 GLocal-K 보다 높은 성능을 보였다. 또한 GoodReads, ModCloth 데이터 세트를 4개의 집단으로 나누어 실험한 Cold Start 실험에서도 GLocal-K 대비 Cold Start 상황에서 좋은 성능을 보였다.

대형할인점 확산에 대한 공간적 영향 (Spatial effect on the diffusion of discount stores)

  • 주영진;김미애
    • 한국유통학회지:유통연구
    • /
    • 제15권4호
    • /
    • pp.61-85
    • /
    • 2010
  • 본 연구에서는 국내 대형할인점의 확산을 효과적으로 설명하기 위해 기업의 정보와 구매자의 구전으로 확산을 설명하는 Bass모형에 제3의 요소로 공간적 영향력을 고려하였다. 국내 대형할인점의 확산은 확산중심지인 서울경인지역에서 저차중심지인 4개 지역권역으로 확산되는 형태를 보임에 따라 공간적 영향이 중요하게 작용할 것으로 기대된다. 본 연구에서 공간적으로 구분된 시장 A(확산중심지)가 시장 B(저차중심지)에 미치는 영향이 완전히 통제되지 못하는 상황에서 시장 A가 시장 B에 미치는 공간적 영향을 다국가확산모형(multinational diffusion model)을 확장한 공간확산모형(spatial diffusion model)을 이용하여 정의하였다. Bass모형과 공간확산모형의 모수추정을 통해 두 가지 정보전달경로와 관련된 혁신계수와 모방계수로 확산을 설명하는 Bass모형보다 공간확산모형이 국내 대형할인점 확산을 더욱 효과적으로 설명하는 것으로 나타났다. 또한 혁신중심지인 서울경인과 4개 지역권역의 소매환경을 나타내는 개념적 거리에 따라 공간확산모형에서 공간적요인의 영향력이 달라질 것이 기대되어 공간확산계수와 소매환경변수간의 상관관계를 살펴보았고, 연구결과 확산중심지에서 저차중심지에 대한 공간적 영향력은 저차중심지의 소매환경이 확산중심지의 소매환경과 유사할수록 크다는 것을 밝혀내었다.

  • PDF

사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법 (Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering)

  • 타이쎄타;하인애;조근식
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.1-20
    • /
    • 2013
  • 소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.

국제프랜차이징 연구요소 및 연구방향 (Research Framework for International Franchising)

  • 김주영;임영균;심재덕
    • 마케팅과학연구
    • /
    • 제18권4호
    • /
    • pp.61-118
    • /
    • 2008
  • 본 연구는 국내외 프랜차이즈의 해외진출에 대한 연구들을 바탕으로 국제프랜차이징연구의 전체적인 연구체계를 세워보고, 연구체계를 형성하고 있는 연구요인들을 확인하여 각 연구요소별로 이루어지는 연구주제와 내용을 살펴보고, 앞으로의 연구주제들을 제안하고자 한다. 주요한 연구요소들은 국제프랜차이징의 동기 및 환경 요소과 진출의사결정, 국제프랜차이징의 진입양식 및 발전전략, 국제프랜차이징의 운영전략 및 국제프랜차이징의 성과이다. 이외에도 국제프랜차이징 연구에 적용할 수 있는 대리인이론, 자원기반이론, 거래비용이론, 조직학습이론 및 해외진출이론들을 설명하였다. 또한 국제프랜차이징연구에서 보다 중점적으로 개발해야 할 질적, 양적 방법론을 소개하였으며, 마지막으로 국내연구의 동향을 정리하여 추후의 연구방향을 종합적으로 정리하였다.

  • PDF