본 논문에서는 영상의 중심이동과 상호정보 추정에 의한 효과적인 얼굴인식 기법을 제안하였다. 여기서 중심이동은 영상의 1차 모멘트에 의해 계산된 중심좌표로 얼굴영상을 이동하는 것이며, 이는 인식에 불필요한 배경을 배제시킴으로써 인식성능을 개선시키기 위함이다. 상호정보 추정은 상관관계를 나타내는 척도로 영상간의 유사성을 효과적으로 측정하기 위함이다. 특히 영상의 상호정보 추정을 위한 확률밀도함수 계산에 동일한 량의 샘플분할을 이용한 적응분할의 추정 방법을 이용함으로써 영상 상호간의 종속성을 더욱 더 정확하게 구하였다. 제안된 기법을 64*64 픽셀의 48장(12명*4장) 얼굴영상을 대상으로 실험한 결과, 제안된 기법은 중심이동을 거치지 않는 단순히 상호정보 추정만을 이용하는 기법보다 우수한 인식성능(인식률, 인식속도)이 있음을 확인하였다. 또한 얼굴의 표정, 위치, 그리고 각도 등의 변화에도 매우 강건한 인식성능이 있음을 확인하였다.
국내의경우, 초기 Cost모델 작성을 위한 비용관련 정보의 축적이 체계적으로 이루어지지 않고, 과거에 수행된 유사 프로젝트의 실적데이터에 대한 정보가 부족해 주 기능 대비 비용에 대한 효용성을 명확히 판단하기 어려워 신뢰할 수 있는 대상선정이 이루어지지 않고 있다. 따라서, 본 연구는 과거 수행된 유사 프로젝트의 비용 정보를 축적, 공유, 활용, 학습할 수 있고, VE활동의 대상선정을 위해 준비단계에서 수행되는 Cost모델의 체계적이고 효율적 분석이 가능한 웹기반 'Cost 모델 분석 시스템(Cost Model Analysis System: CMAS)'의 개념적 모형을 제시하고자 한다. 본 연구에서 제시한 Cost모델 분석 시스템의 개념적 모형을 활용하여 실질적인 시스템이 구축된다면 효과적인 VE 수행을 위한 합리적이고 신뢰성 있는 대상선정이 이루어질 것으로 판단된다.
본 논문에서는 패턴 분류를 위한 수정된 퍼지 최대최소 신경망 모델을 제안하고 그의 유용성을 고찰한다. 이를 위하여 하이퍼박스 내에서 각 특징들에 대하여 가중치 요소론 갖는 새로운 하이퍼큐브 소속함수를 정의한다. 이 가중치 요소는 분류과정에서 임의의 클래스에 대한 각 특징의 상대적인 기여도를 반영한다. 본 연구에서는 이를 위하여 새롭게 정의된 하이퍼박스 생성, 확장 및 축소의 3단계로 이루어지는 학습 방법론을 소개한다. 또한 제안된 모델을 기반으로 하여 학습된 분류기로부터 하이퍼박스 소속함수와 연결가중치를 사용하여 주어진 클래스에 대한 특징의 연관도를 산출하는 형태의 이른바 특징 분석 기법을 제안한다. 이를 위하여 세부적으로 각 특징에 대하여 연관도 척도와 퍼지 소속함수간의 유사도 척도를 정의한다. 또한 실제 패턴 분류문제에 적용한 실험결과를 통하여 제안된 이론의 타당성을 평가한다.
본 논문은 강 등(1994)에 의해 개발된 선형 Galerkin-FEM 모형에 이송항을 추가하여 비선형 Galerkin-FEM 수치모형을 개발하는데 목적이 있다. 이송항의 수치계산은 기존 선형모형의 각 절점별 유속결과를 이용하여 계산하였으며 개발된 모형은 기존의 비선형모형(Owen, 1980; Davies, 1980)보다 수치계산시간의 절약을 도모할 수 있어 효율적이다(Lardner and Song, 1992). 비선형항의 효과를 검토하기 위하여 두가지 수치실험을 수행하였다. 수행한 수치실험은 장방형 영역에서의 취송류실험과 일정유속이 개방경계에서 주어지고 모형영역 중간에 도유제가 있는 경우에 과류형성에 대한 수치실험을 수행하였다. 수치실험 결과 취송류실험의 경우 이송항에 의한 비선형 효과가 적었으며 과류형성 실험인 경우 이송항에 의한 비선형 효과가 크게 나타났고 Stelling(1984)의 연구 결과와 유사하게 재현되었다.
본 논문에서는 두 개의 3차원 메쉬 프레임에서 추출한 운동 성질을 이용하여 형태 특징을 반영하는 3차원 메쉬 에디팅 알고리듬을 제안하였다. 제안하는 알고리듬은 형태적 특징을 유지하는 결과를 얻기 위해서 두 개의 메쉬 프레임으로부터 국부 영역의 표면 특징을 반영하는 운동 특성 벡터를 이용한다. 에디팅 과정에서 사용자는 임의의 꼭지점을 조작 꼭지점(anchor vertex)으로 선택하여 자유롭게 이동시킨다. 조작 꼭지점에는 사용자의 조작에 따라 강제된 운동이 부여되고, 이 운동 특성을 유지하도록 이웃 꼭지점들의 위치가 정해진다. 이 과정을 통해 샘플 메쉬의 특징을 보존하는 에디팅 결과를 얻는다. 모의 실험을 통하여 제안하는 알고리듬이 사용자가 의도한 조작을 충분히 반영하는 동시에 샘플 메쉬 쌍에서 나타나는 운동성을 보존하는 결과를 도출함을 확인하였다.
Experiments were conducted to estimate the performance of drag force type vertical axis wind turbine with an opening-shutting rotor. It was operated by the difference in drag force generated on both sides of the blades. The rotational speed was measured by a tachometer in a wind tunnel and the tunnel wind speed was measured by using a pilot-static tube and a micro manometer. The performance test for a prototype was accomplished by calculating power, power coefficient, torque coefficient from the measurement of torque and rpm by a dynamometer controller. Various design parameters, such as the number of blades(B), blade aspect ratio(W/R), angle of blades$(\alpha)$ and drag coefficient acting on a blade, were considered for optimal conditions. At the experiment of miniature model, maximum efficiency was found at N=15, $\alpha=60^{\circ}$ and W/R=0.32. The measured test variables were power, torque, rotational speed, and wind speeds. The data presented are in the form of power and torque coefficients as a function of tip-speed ratio V/U. Maximum power was found in case of $\Omega=0.33$, when the power and torque coefficient were 0.14 and 0.37 respectively. Comparing model test with prototype test, similarity law by advance ratio for vertical axis wind turbine was confirmed.
움직임 객체 분할은 내용 기반 응용을 위하여 핵심적인 것이다. 다중 프레임 차이 누적은 프레임 차이 정보를 누적하여 움직임 에지를 검출한다. 검출된 움직임 에지와 분할될 현재 프레임의 에지를 비교하여 움직임 객체 에지를 생성한다. 그러나 실시간 카메라로 입력되는 연속 동영상의 움직임 객체 에지에는 객체 색과 배경 색의 일치 혹은 객체의 움직임 감소로 말미암아 에지 단락이 발생한다. 에지 단락은 매우 심각한 문제로서 움직임 객체의 영상 품질을 심하게 손상시키는 경우도 있다. 본 연구에서는 강건하고 포괄적인 에지 연결 알고리즘을 개발하여 이 문제를 해결하였다. 또한 본 연구에서는 자동 움직임 객체 분할 알고리즘을 개발하여 분명하고 깨끗한 모양의 움직임 객체를 자동으로 분할하였다. 개발한 알고리즘은 CIF 영상을 초당 30 프레임 이상 처리할 수 있다. 본 논문에서 개발한 알고리즘은 MPEG-4 내용 기반 코딩 시스템에 적용할 수 있다.
클러스터링은 주어진 데이타 집합의 패턴을 비슷한 성질을 가지는 그룹으로 나누어 패턴 상호간의 관계를 정립하기 위한 방법론이다. 이러한 클러스터링 기법을 위하여 많은 알고리즘이 개발되었고, 패턴인식과 영상처리 등의 여러 공학영역에 적용되어 왔다. 대부분의 실세계 데이타는 그 경계가 명확하지 않으므로 그 특성을 보다 정확히 반영하기 위하여 퍼지이론이 도입되었다.이와 같은 클러스터 분석 방법은 보다 적절히 으용하기 위하여 클러스터링의 적절성을 평가하기 위한 방법론과 함께 연구되어야 한다. 이를 위하여 각 데이타 패턴이 얼마나 잘 분류되었는지를 수학적으로 계산하기 위한 함수들이 제안되었다. 그러나 클로스터 타당성 문제는 주어지 클러스터링 방법론의 특성, 그 알고리즘에서 사용한 파라메터의 성질, 주어진 입력 데이타 집합의 특성 등 여러 복잡한 상황을 포함하고 있으므로 기존의 연구에서와 같이 하나의 함수를 이용하여 해결하기는 어렵다. 그러므로 본 논문에서는 기존에 연구되어온 타당성 측정 함수를 조사하고 그의 단점을 고찰하여 이를 해결하기 위한 방법으로 4가지성능 측정자를 제안하고 이의 결합에 의하여 형성된 클러스터 타당성의 정도를 구하는 방법론을 제시하고자 한다. 또한 이러한 방법은 퍼지 클러스터링을 위한 학습 알고리즘과 결함하여 클러스터의 수나 데이타의 분포에 대한 정보없이 최적 클러스터를 찾아주는 방법에 응용될 수 있음을 보인다.
Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.
The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.