• Title/Summary/Keyword: similar problem retrieval

Search Result 49, Processing Time 0.027 seconds

Efficient Processing of Subsequence Searching in Sequence Databases (시퀀스 데이터베이스를 위한 서브시퀀스 탐색의 효율적인 처리)

  • Park, Sang-Hyun;Kim, Sang-Wook;Park, Jeong-Il
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.155-166
    • /
    • 2001
  • This paper deals with the subsequence searching problem under time-warping. Our work is motivated by the observation that subsequence searches slow down quadratically as the average length of data sequences increases. To resolve this problem, the Segment-Based Approach for Subsequence Searches (SBASS) is proposed. The SBASS divides data and query sequences into a series of segments, and retrieves all data subsequences. Our segmentation scheme allows segments to have different lengths; thus we employ the time warping distance as a similarity measure for each segment pair. For efficient retrieval of similar subsequences, we extract feature vectors from all data segments exploiting their monotonically changing properties, and build a spatial index using feature vectors. The effectiveness of our approach is verified through extensive experiments.

  • PDF

Korean Language Clustering using Word2Vec (Word2Vec를 이용한 한국어 단어 군집화 기법)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.25-30
    • /
    • 2018
  • Recently with the development of Internet technology, a lot of research area such as retrieval and extracting data have getting important for providing the information efficiently and quickly. Especially, the technique of analyzing and finding the semantic similar words for given korean word such as compound words or generated newly is necessary because it is not easy to catch the meaning or semantic about them. To handle of this problem, word clustering is one of the technique which is grouping the similar words of given word. In this paper, we proposed the korean language clustering technique that clusters the similar words by embedding the words using Word2Vec from the given documents.

A Kinematic Approach to Answering Similarity Queries on Complex Human Motion Data (운동학적 접근 방법을 사용한 복잡한 인간 동작 질의 시스템)

  • Han, Hyuck;Kim, Shin-Gyu;Jung, Hyung-Soo;Yeom, Heon-Y.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • Recently there has arisen concern in both the database community and the graphics society about data retrieval from large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding an effective distance measure and an efficient query processing method for such data is a challenging problem. This paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. For efficient indexing, we devise a new adaptive segmentation method that chooses representative frames among similar frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases is reduced greatly (${\times}1/25$) but the search capability of SMoFinder is equal to or superior to that of other systems.

  • PDF

A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results (논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법)

  • Bae, Kyoung-Man;Hwang, Jae-Won;Ko, Young-Joong;Kim, Jong-Hoon
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.3
    • /
    • pp.214-221
    • /
    • 2010
  • The search-results clustering problem is defined as the automatic and on-line grouping of similar documents in search results returned from a search engine. In this paper, we propose a new search-results clustering algorithm specialized for a paper search service. Our system consists of two algorithmic phases: Category Hierarchy Generation System (CHGS) and Paper Clustering System (PCS). In CHGS, we first build up the category hierarchy, called the Field Thesaurus, for each research field using an existing research category hierarchy (KOSEF's research category hierarchy) and the keyword expansion of the field thesaurus by a word clustering method using the K-means algorithm. Then, in PCS, the proposed algorithm determines the category of each paper using top-down and bottom-up methods. The proposed system can be used in the application areas for retrieval services in a specialized field such as a paper search service.

Retrieval algorithm for Web Document using XML DOM (XML DOM을 이용한 웹문서 검색 알고리즘)

  • 김노환;정충교
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.775-782
    • /
    • 2001
  • Until recently Web retrieval engine has presented a demanded document to users according to the amount and the frequency of inquired key words in each document under the assumption that the more key words a document has, the more accessible it is. This method of searching doesn't matter to a normal document such as HTML Web data in which structural information is not involved. However, Web data realized in XML contains structural information and modeling of graphic forms is also available. Therefore, in the case of XML, this method leads to no less trouble since it depends only on the frequency of key words. We consider that this problem can be resolved by way of inquiry which is similar to SQL. This form of inquiry enables us to snatch an exact data we want in a quick and clear way with a full advantage of structural quality of XML, overcoming the shortcomings of frequency-based engine. In this paper, We aim to design a model of information retrieval system of XML data using XML DOM and consider its algorithm related with it.

  • PDF

An Indexing System for Retrieving Similar Paths in XML Documents (XML 문서의 유사 경로 검색을 위한 인덱싱 시스템)

  • Lee, Bum-Suk;Hwang, Byung-Yeon
    • The KIPS Transactions:PartD
    • /
    • v.15D no.2
    • /
    • pp.171-178
    • /
    • 2008
  • Since the XML standard was introduced by the W3C in 1998, documents that have been written in XML have been gradually increasing. Accordingly, several systems have been developed in order to efficiently manage and retrieve massive XML documents. BitCube-a bitmap indexing system-is a representative system for this field of research. Based on the bitmap indexing technique, the path bitmap indexing system(LH06), which performs the clustering of similar paths, improved the problem that the existing BitCube system could not solve, namely, determining similar paths. The path bitmap indexing system has the advantage of a higher retrieval speed in not only exactly matched path searching but also similar path searching. However, the similarity calculation algorithm of this system has a few particular problems. Consequently, it sometimes cannot calculate the similarity even though some of two paths have extremely similar relationships; further, it results in an increment in the number of meaningless clusters. In this paper, we have proposed a novel method that clustering, the similarity between the paths in order to solve these problems. The proposed system yields a stable result for clustering, and it obtains a high score in clustering precision during a performance evaluation against LH06.

A Contents-based Drug Image Retrieval System Using Shape Classification and Color Information (모양분류와 컬러정보를 이용한 내용기반 약 영상 검색 시스템)

  • Chun, Jun-Chul;Kim, Dong-Sun
    • Journal of Internet Computing and Services
    • /
    • v.12 no.6
    • /
    • pp.117-128
    • /
    • 2011
  • In this paper, we present a novel approach for contents-based medication image retrieval from a medication image database using the shape classification and color information of the medication. One major problem in developing a contents-based drug image retrieval system is there are too many similar images in shape and color and it makes difficult to identify any specific medication by a single feature of the drug image. To resolve such difficulty in identifying images, we propose a hybrid approach to retrieve a medication image based on shape and color features of the medication. In the first phase of the proposed method we classify the medications by shape of the images. In the second phase, we identify them by color matching between a query image and preclassified images in the first phase. For the shape classification, the shape signature, which is unique shape descriptor of the medication, is extracted from the boundary of the medication. Once images are classified by the shape signature, Hue and Saturation(HS) color model is used to retrieve a most similarly matched medication image from the classified database images with the query image. The proposed system is designed and developed especially for specific population- seniors to browse medication images by using visual information of the medication in a feasible fashion. The experiment shows the proposed automatic image retrieval system is reliable and convenient to identify the medication images.

QuLa: Queue and Latency-Aware Service Selection and Routing in Service-Centric Networking

  • Smet, Piet;Simoens, Pieter;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.17 no.3
    • /
    • pp.306-320
    • /
    • 2015
  • Due to an explosive growth in services running in different datacenters, there is need for service selection and routing to deliver user requests to the best service instance. In current solutions, it is generally the client that must first select a datacenter to forward the request to before an internal load-balancer of the selected datacenter can select the optimal instance. An optimal selection requires knowledge of both network and server characteristics, making clients less suitable to make this decision. Information-Centric Networking (ICN) research solved a similar selection problem for static data retrieval by integrating content delivery as a native network feature. We address the selection problem for services by extending the ICN-principles for services. In this paper we present Queue and Latency, a network-driven service selection algorithm which maps user demand to service instances, taking into account both network and server metrics. To reduce the size of service router forwarding tables, we present a statistical method to approximate an optimal load distribution with minimized router state required. Simulation results show that our statistical routing approach approximates the average system response time of source-based routing with minimized state in forwarding tables.

Automatic Retrieval of SNS Opinion Document Using Machine Learning Technique (기계학습을 이용한 SNS 오피니언 문서의 자동추출기법)

  • Chang, Jae-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.27-35
    • /
    • 2013
  • Recently, as Social Network Services(SNS) are becoming more popular, much research has been doing on analyzing public opinions from SNS. One of the most important tasks for solving such a problem is to separate opinion(subjective) documents from others(e.g. objective documents) in SNS. In this paper, we propose a new method of retrieving the opinion documents from Twitter. The reason why it is not easy to search or classify the opinion documents in Twitter is due to a lack of publicly available Twitter documents for training. To tackle the problem, at first, we build a machine-learned model for sentiment classification using the external documents similar to Twitter, and then modify the model to separate the opinion documents from Twitter. Experimental results show that proposed method can be applied successfully in opinion classification.

A Study on Similar Trademark Search Model Using Convolutional Neural Networks (합성곱 신경망(Convolutional Neural Network)을 활용한 지능형 유사상표 검색 모형 개발)

  • Yoon, Jae-Woong;Lee, Suk-Jun;Song, Chil-Yong;Kim, Yeon-Sik;Jung, Mi-Young;Jeong, Sang-Il
    • Management & Information Systems Review
    • /
    • v.38 no.3
    • /
    • pp.55-80
    • /
    • 2019
  • Recently, many companies improving their management performance by building a powerful brand value which is recognized for trademark rights. However, as growing up the size of online commerce market, the infringement of trademark rights is increasing. According to various studies and reports, cases of foreign and domestic companies infringing on their trademark rights are increased. As the manpower and the cost required for the protection of trademark are enormous, small and medium enterprises(SMEs) could not conduct preliminary investigations to protect their trademark rights. Besides, due to the trademark image search service does not exist, many domestic companies have a problem that investigating huge amounts of trademarks manually when conducting preliminary investigations to protect their rights of trademark. Therefore, we develop an intelligent similar trademark search model to reduce the manpower and cost for preliminary investigation. To measure the performance of the model which is developed in this study, test data selected by intellectual property experts was used, and the performance of ResNet V1 101 was the highest. The significance of this study is as follows. The experimental results empirically demonstrate that the image classification algorithm shows high performance not only object recognition but also image retrieval. Since the model that developed in this study was learned through actual trademark image data, it is expected that it can be applied in the real industrial environment.