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요    약

대규모 인간 동작 데이터베이스에서 고차원의 데이터를 처리하는 것이 큰 비용을 요구하기에, 최근 데이터베이스 및 

그래픽스 학계는 인간 동작 데이터 질의 및 접근에 큰 관심을 가지게 되었다. 특히, 인간 동작 데이터를 위한 효과적인 
유사도(거리) 측정 방법이나 질의 처리는 여전히 많은 연구진들이 도전하고 있는 문제이다. 이에, 본 연구진은 SMoFinder

라고 명명한 동작 질의 처리 시스템을 제안한다. SMoFinder는 새롭게 고안된 운동학적 거리 측정 그리고 적응적 프레임 

세그멘테이션에 기반하는 효율적인 인덱싱을 사용하여 동작 질의를 처리한다. 

이를 위해, SMoFinder에서는 인간 동작을 다연결 물리 운동으로 간주하고 새로운 가중치 Minkowski 함수를 정의했다.  

또한, 효율적인 인덱싱을 위해 모든 프레임을 저장하지 않고 유사한 프레임들 중에서 대표 프레임을 뽑아서 저장하는 

적응적 세그멘테이션을 고안했다. 그리고, 효율적인 검색을 위해 이들 대표 프레임들만 가지고 k-근접 이웃 질의를 수행
하는 새로운 방법을 제안한다. 마지막으로, SMoFinder가 데이터베이스 용량이 크게 줄지만(1/25배), 검색 능력은 다른 시
스템과 동일하거나 우월하다는 것을 실험을 통해 보여주고자 한다.

Abstract

Recently there has arisen concern in both the database community and the graphics society about data retrieval from 

large motion databases because the high dimensionality of motion data implies high costs. In this circumstance, finding 

an effective distance measure and an efficient query processing method for such data is a challenging problem. This 

paper presents an elaborate motion query processing system, SMoFinder (Similar Motion Finder), which incorporates a 

novel kinematic distance measure and an efficient indexing strategy via adaptive frame segmentation. 

To this end, we regard human motions as multi-linkage kinematics and propose the weighted Minkowski distance metric. 

For efficient indexing, we devise a new adaptive segmentation method that chooses  representative frames among similar 

frames and stores chosen frames instead of all frames. For efficient search, we propose a new search method that processes 

k-nearest neighbors queries over only representative frames. Our experimental results show that the size of motion databases 

is reduced greatly (x1/25) but the search capability of SMoFinder is equal to or superior to that of other systems. 
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1. Introduction

Recently motion retrieval from large human 

motion databases has gained growing attention 

from database researchers due to the challenging 

task of indexing and querying high dimensional 

human motion data. Motion data is generated 

using the motion capture (mocap) technique, and a 

massive amount of mocap data is accessible to 

those who want to index, analyze, and query these 

datasets. Building a system for querying complex 

human motions would provide significant benefit 

in this area.  

Much research work [12, 16] deals with this 

problem by viewing human motion as high 

dimensional trajectories. They view each segment 

or frame as a numerical vector; as a result, an 

entire set of continuous frames is represented by 

multidimensional time series. Existing distance 

measures [5, 11] on time series data can be 

applied to these converted datasets. The drawback 

of using these distance measures is inaccuracy, 

due to the high dimensionality of motion data. 

We develop SMoFinder, a system for querying 

complex human motions using a kinematic 

approach. In our system, we tackle the problem of 

indexing and querying human motion data from a 

kinematic viewpoint, instead of a categorical 

approach [13]. The kinematic approach matches 

perfectly to an existing mocap technique: all 

movements of human bones are represented by a 

4-dimensional motion matrix. Considering human 

skeleton (or kinematic) chains, we can see that 

chains of bones are not completely independent; 

i.e., all human bones are (uni/bi)laterally linked to 

other bones. Using this fact, we define a feature 

vector for each frame, and design a distance 

measure that can capture motion similarity more 

accurately.

We represent each frame of human motion as a 

multidimensional numeric vector whose values are 

angles between a given reference vector and a 

vector  representing each bone with respect to 

modeling  coordinates. The reference vector is a 

perpendicular vector to the plane created by three 

body points, which constitute a rigid body. Our 

feature vector is basically a vector of relative 

angle movements to the incident bone. Unlike the 

naive method of extracting a feature vector from 

human motion by using the 4-dimensional 

coordinates, our method can capture the similar 

human motions accurately, irrespective of the size 

of a human actor1).

To capture similar motion in a more 

fine-grained way, we then define a similarity 

measure. The similarity measure of our system 

exploits the aforementioned observation. The basic 

principle of our distance function is based on the 

Minkowski distance. For a point (x1, x2, ..., xn) 

and a point (y1, y2, ..., yn), the Minkowski 

distance of order p (p-norm distance) is defined as 

: the L1 distance (1-norm distance or the 

Minkowski distance of order 1) is  




 , the 

L2 distance (2-norm distance or the Minkowski 

distance of order 2) is 







 
 , and p-norm 

distance is 







 
  . Our approach is based 

on the L2 distance.

However, the L2 distance between two 

equally-weighted feature vectors cannot be directly 

1) This is a scale-free property.
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applied to measuring the difference between the 

L2 distance generates false positive similar frames. 

We therefore adapt the L2 distance in order to 

capture semantically correct similar motions while 

reducing false positive frames. This is done by 

using the characteristics of linked human skeleton 

chains. We use the weighted L2 distance 

    where    that will 

be explained in the Section 3.2. The intuition 

behind the wL2 distance measure is that a bone 

with a longer kinematic chain has a larger effect 

on the change of an entire pose than a bone with 

a shorter kinematic chain, as a  consequence, we 

give higher weight to bones with a longer 

kinematic chain.

Due to the high dimensionality of a feature 

vector, SMoFinder cannot exploit existing indexing 

techniques (e.g. R-tree or its variants) for the 

dynamic time warping (DTW) or the discrete 

Fourier transform (DFT). However, because our 

similarity measure is based on the L2 distance, we 

can adopt an indexing  technique based on the 

arbitrary metric. Moreover, we devise the 

compression strategy to use the storage efficiently 

and process a motion query quickly.

The graphical user interface (GUI) provides an 

effective way to generate a motion query. 

Generally, motion retrieval systems provide two 

types of query models: textual descriptions such as 

”a kick of the right foot” and short motion 

clips[13]. We focus on the second model. The 

GUI requests the process of the generated motion 

query and lists results of the query, and play the 

similar part of the selected clip to the query clip.

In this paper, we present SMoFinder, a novel 

motion retrieval system that finds similar or 

matching motions to a query motion regardless of 

the complexity of the query motion. Contrary to 

[6, 13], our work takes into account kinematic 

elements for the feature extraction, and processes 

an approximate k-nearest neighbor (kNN) instead 

of an exact kNN query2).

The rest of the paper is organized as follows. 

We review related work in Section 2. In Section 3 

we present the architecture of the proposed 

system: feature extraction, distance measure, 

adaptive segmentation, indexing, and query 

processing. Section 4 contains the evaluation of 

SMoFinder. Finally, We conclude this paper in 

Section 5.

2. Related Work

Large motion capture data (e.g. [2]) reinforces 

the demand for efficient indexing and retrieval 

methods. Such methods are necessary to efficiently 

retrieve logically related motions, which can then 

be processed via editing and morphing techniques.

Motion retrieval is closely related to similarity 

search in time series databases, which have been 

studied for over a decade. Given a distance metric 

and a query time sequence, the task is to search a 

database for time sequences whose distance to the 

query is either below a threshold ϵ or among the 

k smallest.  Most proposed indexing approaches 

use the original GEMINI framework[8] proposed 

by Faloutsos et al, but suggest a different 

approach to the dimensionality reduction stage. 

First, a low-dimensional approximation is extracted 

2) If the distance measure captures the similarity accurately, small 

difference in the distance is tolerable. In particular, smaller 

distance from the query motion does not mean more similar 

result always.
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from each time series in the database. Example 

approximations include the Discrete Fourier 

Transform (DFT)[4], several kinds of Wavelets 

(DWT)[14], the average values in adjacent 

windows[10], and bounding boxes[17]. Next, a 

distance metric is defined between the time series. 

Finally, the approximated signals are stored in a 

spatial data structure such as an R-tree[9].

Here, possible distortions of the time axis 

constitute a major problem in comparing related 

time series, usually solved by means of dynamic 

time warping (DTW). DTW is a technique that is 

traditionally associated with speech recognition. 

DTW, however, is cost-intensive in computing 

time and memory. To address this problem, we 

use a mixture of a segmentation technique and a 

dimensionality reduction method.

In [6] and [13], discretization of time series has 

been studied and one high dimensional categorical 

feature vector is extracted from one frame of 

human motion data by thresholding the 

logic-oriented geometric relations. A human 

motion is defined by a sequence of geometric 

relations. For example, the distance between two 

legs is used to define a "walking" motion. A 

motion can be defined as a walking motion when 

a sequence of distance between two legs is (-1m, 

0.5m, 0m, 0.5m, 1m). The problem of this 

approach is that all motions used in applications 

must be pre-defined as a form of geometric 

relations. For example, if only walking and 

dancing motions are defined, applications can not 

search "dancing" motions. Therefore, general 

relations between any two bones such angle or 

distance are needed, and this point is our 

motivation of our feature vector extraction scheme.

Due to high dimensionality of our feature 

vector, SMoFinder adopts an M-tree[7] for 

indexing motions instead of an R-tree3). The 

M-tree is a balanced tree that can deal with 

dynamic and high-dimensional data efficiently. If 

data in the M-tree meet properties of symmetry, 

non negativity, and triangle inequality, the M-tree 

can efficiently process range or k-NN query with 

novel pruning techniques. Since our feature vector 

is based on the Minkowski distance, our feature 

vector meets the three properties, and SMoFinder 

can exploit the k-NN query processing scheme of 

the M-tree to find similar motions to a query 

motion.

3. Motion Search System

Figure 1 shows the overview of SMoFinder. 

There are two main parts, indexing and query 

processing. Firstly, high-dimensional feature 

vectors are extracted from motion databases, and 

adaptively segmented using the weighted 

Minkowski distance measure  . In SMoFinder, 

the segmented feature vectors are indexed by 

M-tree [7] that is efficient for comparing distances 

within motion data. Users then send motion query 

requests to the query processor, and M-tree finds 

the approximate k nearest neighbors from M-tree 

based index. All these components are explained 

in the following subsections.

3.1 Feature Vector

In this section, we define a feature vector 

describing complex motions effectively. Previous 

work [6, 13] described motions by using binary 

3) The problem of the R-tree related to high-dimensionality is 

known as the curse of dimensionality.
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(Figure 1) Overview of SMoFinder

features, which are simple and efficient for 

processing queries but are not able to depict 

complex motions.

   where n = number of bones

Our feature vector () consists of angles 

between each bone and a reference (or root) 

vector;   represents an angle between a bone  

and a reference vector. Figure 2 illustrates how to 

define the reference plane and feature vectors. The 

reference plane in Figure 2(b) is defined by three 

points, which are the root joint, the left hip joint, 

and the right hip joint. Because their lengths and 

the angle between the left and right hip joints are 

fixed, these three points constitute a rigid plane. 

The reference vector   is now created by 

applying the outer product to two vectors 

lhipjoint and   rhipjoint from these points, so it 

is perpendicular to the reference plane. An angle 

 in a feature vector   can be obtained from 

the one between the reference vector   and the 

vectors of each bone (e.g.  between   and 
  elbow in Figure 2(c)). In SMoFinder, these 

angles have radian values, and the feature vectors 

have twenty eight dimensions. The intuition 

behind the usage of a relative angle for a feature 

vector is to resolve the scale-free property. If two 

different actors take the same pose, the 

geometrical coordinates of these motion frames 

have completely different values. These frames, 

however, can have a very similar angle  for 

each bone in our feature vector framework.

3.2 Distance Measure and Adaptive 

Segmentation

Once we define a feature vector for each frame, 

we need to define a proper distance metric to 

measure the similarity between two high 

dimensional motion frames. A naive way of 

measuring a similarity between two vectors can be 

done by using the  norm. The  norm, 

however, has a deficiency in detecting false 

positive similar motion frames. Figure 3 shows 

two motion frames that change two different 

joints: a right femur (the pose to raise a leg 

(Figure 3(a))) and a right foot (the pose to reach 

a foot (Figure 3(b))). Even though these two 

frames look significantly different, the  norm 

may say that these frames have the same distance 

value to the reference frame.

            (a)             (b)

(Figure 3) The motivation of the   

distance.

It, therefore, is very important and difficult to 

find an effective distance measure for high- 



운동학적 접근 방법을 사용한 복잡한 인간 동작 질의 시스템

6 2009. 8

(Figure 4) Examples  values

(Figure 5) Segmentation of walking motion. 

Distance threshold(δ) = 0.1

dimensional motion data. To capture these types of 

hard-to-catch differences in motion frames, we 

introduce weighting factors into the L2 distance 

measure:

 







 







   and  










 and  are the two feature vectors, and 

 is a weighting factor.  and  denote a 

kinematic chain starting from a joint  and its 

length respectively. To measure the importance of 

each bone, we assign  to each bone , and all 

weighting factors are normalized.  indeed 

represents the relative impact on the change of an 

entire human pose. As Figure 3 shows,   

makes a bigger change to the overall pose than 

root. To this end, the bone which has a longer 

kinematic chain has a larger weighting factor. A 

kinematic chain menas sequence of bones that 

starts from end bone (i.e., right/left toes, right/left 

fingers, and head) to the reference bone. For 

example, a kinematic chain for the left femur and 

left foot are "left toe - left foot - left tibia - left 

femur" and "left toe - left foot", respectively. Both 

chain sizes are 4 and 1. Therefore, the weighting 

factor for the left femur is larger than that for the 

left foot. 

Figure 4 shows weighted L2 distances from the 

reference frame (Figure 4(a)). Figure 4(a) and 4(b) 

show the pose to climb up (similar frames), and 

Figure 4(c) to jump up (different frame). Each 

frame comes from different motion data. As 

shown above, our weighted L2 distance measure 

effectively reveals the differences between 

motions. The distance of Figure 4(a) and 4(c) is 

three times larger than that of Figure 4(a) and 

4(b).

Since consecutive frames are very similar, the 

distance between their feature vectors is very 

small. A good way to improve the efficiency of 

similarity search is to choose representative frames 

from each motion and store the selected frames, 

LandMark frames, instead of all frames. Once a 

frame is chosen to be a LandMark frame, the 

frame is used to represent all successive frames 

for which the distance from the LandMark frame 

is less than a user-defined threshold (δ). The 

LandMark frame is similar to the convex in [6]. 
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Figure 5 shows an example of our segmentation 

technique with δ = 0.1. Once the 1400th frame in 

the figure is chosen to be a LandMark frame, the 

LandMark frame represents successive frames of 

which the frame number ranges from 1401 to 

1414 since the L2 distance between the 1400th 

frame and the successive frames is less than 0.1. 

Then, the 1415th frame becomes a new LandMark 

frame since the L2 distance between the 1400th 

frame and the 1415th frame is more than 0.1.

3.3 Indexing

 We use the M-tree[7] data structure for 

indexing LandMark frames. An M-tree, a dynamic 

version of Vp-tree[18], is an index structure for 

the efficient resolution of similarity queries on 

complex objects. Query processing over an M-tree 

is based on an arbitrary metric, i.e. a distance 

function that satisfies the positivity, symmetry, and 

triangle inequality properties. Since our distance 

function satisfies these properties, an M-tree is an 

appropriate data structure for indexing frames. A 

28-dimensional feature vector of a frame and the 

combinational form of the motion id and frame 

number are used as the key and a value of each 

M-tree entry. M-tree leaves for two consecutive 

frames are linked to each other, which link makes 

SMoFinder efficiently process a special type of 

motion query such as "display next(/previous) 200 

frames after(/before) the query clip." 

3.4 Searching Motions

 Searching motions means to find a time series 

that is similar to the time series of the query clip.  

SMoFinder provides the approximate nearest 

neighbor (ANN) query or the approximate k-NN 

query. Due to the properties of high 

dimensionality[6] and our index structure, an 

indexing technique on DTW or DFT distances 

cannot be applied to SMoFinder. 

Instead we use the dynamic programming method. 

First, SMoFinder transforms a query clip (t frames) into 

m LandMark frames with the same threshold (δ). It 

then generates the kNN query for the first and the last 

LandMark frames, and processes k-NN queries with the 

user-defined threshold ε (>δ). When processing the 

queries, it applies a pruning technique to search similar 

frames efficiently; a node  is pruned if 

   ×. Since one LandMark frame 

represents all consecutive frames with 

  , the constraint is δ instead of δ. 

After processing the kNN queries of the first 

and the last LandMark frames, SMoFinder 

retrieves motions that contains frames ( and  

frames) that are similar to the first and the last 

LandMark frames of the query4). FastDTW[15] 

which is an O(N) algorithm calculates the 

distance between the query clip and result clips, 

and we have approximate kNN results. In 

SMoFinder the distance between two consecutive 

frames is constant. 

4. Evaluation

In this section, we will show the efficient and 

effective motion retrieval of our SMoFinder 

system with data from the CMU Motion Capture 

Database[2]. SMoFinder is built with Visual C++ 

and OpenGL.  The number of motions is 2434 

and the raw motion data size is over 2GB.

4) Distance between   () and the first(last) LandMark frame is 

less than ε.
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4.1 User Interface and Motion Query 

Generation

Figure 6 shows the user interface of SMoFinder. 

The major functionalities of SMoFinder are to 

build the motion index and to search similar 

motions. The motion index is built by just 

selecting a directory which contains motion data 

files. Currently, SMoFinder supports only 

Acclaim’s ASF/AMC format[3]. Building index is 

a time consuming job. But this task is executed 

only once at the initialization time and need not 

be repeated for every retrieval. 

(Figure 6) Graphical User Interface of SMoFinder

SMoFinder provides an easy tool to make 

motion queries. Motion queries are created by 

extracting specific ranges of motion files. This 

method might limit the contents of queries within 

the scope of existing motions. However, making 

queries from empty space is more difficult than 

this method due to the high dimensionality of 

motion data. If someone writes 10 frames of 

twenty eight dimensional motion queries by hands, 

it might take over an hour, including revising 

motions naturally. Thus, we can say that the 

method which SMoFinder provides is more 

user-friendly.

4.2 Effect of Adaptive Segmentation

From Section 3.2, we can see that the space 

requirement for a LandMark-based time series is 

less  than that for the original motion sequence. 

Table 1 shows the total index size of feature 

vectors with or without the adaptive segmentation. 

In spite of the significant decrease in data size, 

SMoFinder can keep high search quality. In fact, 

the difference between one frame and the frame 

after the next is similar to that between two 

consecutive categorical features in [5, 12]; this 

observation validates that our segmentation 

technique is more fine-grained than the categorical 

feature extraction.

(Table 1) Index size regarding to adaptive 

segmentation

With segmentation Without segmentation

size  44.7MB 1112MB

4.3 Similar Motion Search

In this section, we present complex motion 

search experimental results with two queries. The 

first query shows the ability to distinguish between 

walking and running. The relative positions of legs 

and arms are very similar in these two motions. 

To this end, a  fine-grained way of modeling 

motions is essential. Figure 7 shows one of the 

results of searching motions with the query of 

Figure 5. As it shows, the motion of Figure 7 is 

very similar to that of Figure 5. 

The second query is more complex than the 
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first one. The second query includes acrobatics, 

sports, and dances. These motions are hard to 

describe accurately, and it is much harder to 

measure distances from such motions. If these 

motions are not managed in a fine-grained way, 

many false positive cases can be retrieved. 

SMoFinder and its feature vectors are enough to 

retrieve complex motions effectively. 

However, content-based indexing approaches 

such as [6] and [13] can not process these queries 

if feature vectors for these motions are not defined 

in the system. Our search performance is not as 

good as results in dimensionality reduction based 

techniques such as [5] and [10]. However, they 

generate more false positives than our approach. 

(Figure 7) Result motion (Query motion : Figure 5)

4. Conclusion

In this paper we presented SMoFinder, a novel 

system for similarity search in human motions. 

Our system is based on the feature extraction and 

the approximate kNN query processing engine. In 

order to extract features from human motions, our 

system takes into account kinematic elements. We 

use  segmentation and M-tree to index features 

from human motions. Our query processing engine 

is based on the weighted Minkowski distance 

between LandMark frames. SMoFinder benefits 

from these characteristics in terms of storage 

efficiency and effectiveness of query processing. 

In the near future, we will extend our system for 

mining motifs and unusual motions.
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