• Title/Summary/Keyword: silver.

Search Result 3,503, Processing Time 0.029 seconds

Mineralogy of gold-silver deposits in Chungcheong Province (충청도(忠淸道) 일원(一圓)의 금(金)·은(銀)광상(鑛床)에 대한 광물학적(鑛物學的) 연구(硏究))

  • Choi, Seon Gyu;Park, No Young;Hong, Sei Sun
    • Economic and Environmental Geology
    • /
    • v.21 no.3
    • /
    • pp.223-234
    • /
    • 1988
  • A large number of gold and/or silver-bearing quartz veins occur in or near Mesozoic granite batholith elongated in a NE-SW direction within the Chungcheong Province. Precambrian schists and gneisses, and Jurassic and Cretaceous granitic rocks serve as hosts for gold and/or silver deposits. On the basis of Ag/Au total production and ore grade ratio, 15 mines may be divided into three major groups: gold-dominant deposits, gold-silver deposits, and silver-dominant deposits. The chemical composition of electrum from skarn deposit (Geodo mine), alaskite-type deposit (Geumjeong mine) and 15 vein deposits was summarized. It was found that the Au content of electrum for vein deposits ranging from 5.2 to 86.5 is lower than that for skarn and alaskite deposits. Among 15 vein deposits, the composition of electrum associated with pyrrhotite is relatively high and has a narrow range of 40.8 to 86.5 atomic % Au, but the Au content of electrum with pyrite is in range of 5.2 to 82.8 atomic %, and is clearly lower than that with pyrrhotite. The grouping of ages for these mines indicates that gold and/or silver mineralizations occurred during two periods in the Mesozoic. Daebo igneous activities are restricted to gold mineralization in the range of 158 to 133 Ma, whereas Bulgugsa igneous activities are related to gold and/or silver mineralization ranging from 108 to 71 Ma. Generally speaking, Jurassic gold-dominant veins have many common characteristics; notably prominent association with pegmatites, simply massive vein morphology, high fineness in the ore concentrates, rarity of silver minerals, and a distinctively simple mineralogy, including sphalerite, galena, chalcopyrite, pyrrhotite and/or pyrite. Although individual deposits exhibit widely differing diversity, Cretaceous gold-silver and silver-dominant veins are characterized by features such as complex vein, low to medium fineness in the ore concentrates and abundance of silver minerals including Ag sulfosalts, Ag sulfides, Ag tellurides and native silver.

  • PDF

Characteristics of Silver Nanow ire Solution and Film Depending on Hydroxypropyl Methylcellulose Adhesion Promoter Addition (Hydroxypropyl methylcellulose 접착력 증진제 첨가에 따른 은 나노와이어 용액 및 필름의 특성 변화)

  • Seungju Kang;Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.54-59
    • /
    • 2023
  • Silver nanowire-based transparent electrodes are very attractive as a next-generation flexible and transparent electrode that can replace ITO-based flexible electrodes because they have excellent conductivity, transmittance and mechanical flexibility. However, weak understanding of the silver nanowire solution for the fabrication of silver nanowire-based transparent electrodes often cause abnormal operation of the electrical device or peeling problem of the electrode films when applied to electronic devices. Here, we studied a Hydroxypropyl Methylcellulose (HPMC) adhesion promoter, which is one of the additives for silver nanowire solution, to improve the understanding of silver nanowire solution. In detail, it is characterized how the HPMC changes the properties of silver nanowire solution and silver nanowire film, which is fabricated with silver nanowire solution including the HPMC adhesion promoter. As the characteristics of solution, polar surface tension and dispersive surface tension were measured. As the film characteristics, surface energy, surface morphology, silver nanowire density, and sheet resistance were analyzed.

Evaluation of the Remineralization Capacity of Water-based Silver Fluoride

  • Gwangsuk Kim;Juhyun Lee;Haeni Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.51 no.1
    • /
    • pp.80-87
    • /
    • 2024
  • Silver diamine fluoride, which can arrest dental caries, is alkaline and may cause mild soft tissue irritation. Water-based silver fluoride has a neutral pH, which is closer to the physiological range, and is biocompatible for use in the oral environment. This study aimed to evaluate the effect of water-based silver fluoride on remineralizing early enamel lesions by comparing it with other fluoride agents through microhardness and quantitative light-induced fluorescence measurements. An in vitro study with intact bovine incisors was performed. Artificial enamel lesions were induced and subjected to microhardness and quantitative light-induced fluorescence testing. Specimens were randomly divided into 4 groups for treatment. The specimens in group I were treated with water-based silver fluoride and potassium iodide, group II with silver diamine fluoride and potassium iodide, group III with sodium fluoride varnish, and group IV with distilled water. After 8 days of pH cycling, the specimens were subjected to microhardness and quantitative light-induced fluorescence testing. Water-based silver fluoride and silver diamine fluoride showed the greatest increases in microhardness and quantitative light-induced fluorescence, with no significant differences between the two. Sodium fluoride varnish also exhibited a significant increase in microhardness and quantitative light-induced fluorescence, but the differences were smaller than those for water-based silver fluoride and silver diamine fluoride. Water-based silver fluoride is considered useful in a clinical setting for remineralizing enamel lesions, with the advantages of no risk of tissue burn and improved taste and smell.

Growth Performance of Pangasiid Catfish, Silver carp and Catla in Polyculture (복합양식에서 pangasiid catfish, silver carp과 catla의 성장률)

  • Sarkar, Md. Reaz Uddin;Khan, Saleha;Haque, Md. Mahfuzul;Khan, Mohammed Nurul Absar;Luyen, Quoc-Hai;Choi, Jae-Suk
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1186-1193
    • /
    • 2008
  • The growth performance of pangasiid catfish (Pangasius hypophthalmus), silver carp (Hypophthalmichthys molitrix) and catla (Catla catla) was evaluated in polyculture at varied combinations and stocking ratios in earthen pond for a period of 16 weeks. Combinations of pangasiid catfish, silver carp and catla with the total density of 30,000 fish per hectare were evaluated. A commercial pelleted feed containing 28% crude protein and 6% lipid was fed only to pangasiid catfish at the rate of 8% of body weight during the first six weeks, 6% during the second six weeks and 4% thereafter twice daily. The growth and feed utilization efficiency of pangasiid catfish were found similar in all treatments. The growth of silver carp was markedly decreased upon the increase of its own stocking density. The highest growth of silver carp achieved in polyculture of pangasiid catfish, silver carp and catla at 2:1:1 ratio where density of silver carp was lowest. The growth of catla was found to be affected by the presence of silver carp. The growth rate of catla markedly declined with the increase of silver carp density. The highest growth of catla obtained in polyculture of pangasiid catfish only with catla stocked at 1:1 ratio. The highest yield and economic return achieved in polyculture of pangasiid catfish, silver carp and catla at the ratio of 2:1:1 due to higher growth of silver carp and higher market value of catla. The water quality conditions in all different treatment ponds were within optimum ranges throughout the culture period and the values did not show any significant variation (p>0.05) among the treatments.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Effect of Salt on Facilitated Propylene Transport through Crosslinked PVA/Silver Salt Complex Membranes

  • Kim, Jong-Hak;Min, Byoung-Ryul;Lee, Ki-Bong;Kang, Yong-Soo
    • Korean Membrane Journal
    • /
    • v.8 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • Complex membranes consisting of silver salt ($AgBF_4,\;AgCF_3SO_3,\;AgSbF_6,\;AgNO_3$) and poly(vinyl alcohol) (PVA) or crosslinked PVA (CPVA) were prepared and tested for the separation of propylene/propane mixtures. For the tested membranes, the complex membranes containing $AgBF_4$ exhibited the highest separation properties, i.e., approximately 20 GPU ($1 GPU=10^{-6}cm^3 (STP)/(cm^2 sec cmHg)$) and 100 of selectivity at 0.2 of silver mole fraction. The CPVA membranes containing silver salt always showed higher selectivity than PVA membranes, presenting silver ions coordinated to -CHO are more effective than those to -OH groups. The threshold silver concentration of CPVA membranes was lower than that of PVA membranes, which might be due to stronger interaction of silver ions with -CHO than that with -OH. The composition at which the selectivity is the highest did not significantly depend on the crosslinking, but did on the kind of silver salt.

Antimicrobial Activity of Fabrics Treated with Colloidal Silver Solutions Made by Electrolysis and Reduction (제조 방법이 다른 은 콜로이드 용액 처리 직물의 항균효과)

  • Chung Haewon;Kim Boyeon;Yang Heeju
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.6
    • /
    • pp.805-813
    • /
    • 2005
  • In recent years, greatly increased incidences of diseases made people more concerned about their hygienic environment. Since clothes are the closest environment to man, many methods have beef proposed to impart antimicrobial properties to the textiles. Benefits associated with incorporating antimicrobial properties in textiles include protection to the wearer from microbiological attack, and prevention of odor from perspiration. Silver has been known to kill 650 different disease organisms, however, nano-sized silver particles are known as skin friendly and does not cause skin irritation. In this study, we have examined the antimicrobial effects of cotton or polyester fabric, on which nano-sized silver particles were treated. Colloidal silver solution made by electrolysis of $99.9\%$ silver stick was more effective than that by reduction of $AgNO_3.\;0.7\%$ concentration of colloidal silver solution by electrolysis is helpful to give reduction of $99.9\%$ S. aureus and K. pneumoniae on a cotton fabric without the decrease of whiteness. Since the structures of fiber and fabric effect on their antimicrobial property, PET filament fabric didn't have sufficient antimicrobial properly. The fabrics treated with up to $5\%$ colloidal silver solution didn't have the properly of antistatic and electromagnetic shield.

Preparation of Poly(vinyl acetate)/Silver Hollow Microspheres via Suspension Polymerization (현탁중합에 의한 폴리(비닐 아세테이트)/은 중공 미세입자의 제조)

  • Yeum, Jeong-Hyun
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.390-394
    • /
    • 2011
  • Effects of silver nanoparticles on the polymerization rate and morphology of poly(vinyl acetate) (PVAc)/silver microspheres prepared by suspension polymerization of VAc were investigated. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction and atomic absorption spectrometry were used to characterize the morphology and properties of the PVAc/silver microspheres. Due to the change of hydrophilicity of silver nanoparticles, appearance of the microspheres having golf ball-like convave surfaces was observed. Under controlled concentration of surfactant, PVAc/silver microspheres with various hollow structures were synthesized. In the case of silver nanoparticles modified by surfactant, the polymerization rate increased slightly. PVAc/silver microspheres with a conversion up to 80% were prepared via suspension polymerization.

ELECTROCHEMICAL STUDY OF ELECTROLESS PLATING OF SILVER

  • Lee, Jae-Ho
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.447-451
    • /
    • 1999
  • Silver has the highest electrical conductivity of all metals and consequently this property is an attractive feature which makes it a leading candidate for use in electronic devices. The research conducted was focused primarily on the development of a process for obtaining a deposited silver-coating onto alumina, for applications related to electrical-conducting devices and, ancillarily, catalysts. Alumina balls and plane substrates were utilized for the investigation. The coating process employed an aqueous ammoniacal silver-nitrate electrolytes with a formaldehyde solution as the reductant. Modifying additives-an activator which would be expected to promote good deposition-characteristics onto the (dielectric) substrate and an inhibitor which would obviate homogeneous reduction (precipitation) of silver was observed when the activator-containing silver-electrolyte reductant constituents were combined. However, the silver-electrolyte/reductant system with inhibitor could be employed (at 8$0^{\circ}C$) to achieve a viable (subject to future research optimization) coating on alumina. The influence of the processing temperature on the deposition process was delineated during the course of the research. The morphology of the deposited-silver on the alumina balls was assessed by SEM imaging. A tape-peel test was employed, with the plane substrates, to semi-quantitatively characterize the adhesion to the alumina.

  • PDF

Antimicrobial Fiber Products Treated with Silica Hybrid Ag Nanoparticles

  • Kim, Hwa-Jung;Park, Hae-Jin;Choi, Seong-Ho;Park, Hae-Jun
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.273-279
    • /
    • 2012
  • Silica hybrid silver nanoparticles showing the strong antimicrobial activity, in which nano-silver is bound to silica molecules, has been synthesized using ${\gamma}-irradiation$ at room temperature. The present study relates to an antimicrobial composition for coating fiber products comprising silica hybrid silver nanoparticles. In this study, we describe antimicrobial fiber products coated with the silica hybrid silver nanoparticles and a method of antimicrobially treating fiber products by coating the fiber products with the silica hybrid silver nanoparticles. The antimicrobial fiber products exhibited excellent antimicrobial effects. In detailed practice, when the present composition comprising nanosized silica-silver was applied to a cloth (fabric) in a concentration of $6.4mg\;yard^{-1}$, the viable cell number decreased to less than 10 cells before and after laundering, resulting in a reduction of 99.9% or greater in the viable cell number. The present composition displays long-lasting potent disinfecting effects on bacteria. Also, we investigated the toxicity of silica hybrid silver nanoparticles in rats. The skin of rats was treated with a 30 ppm nanoparticles solution ($2ml\;Kg^{-1}$) for 8 days. No toxicity was detected in the treatment. These results suggest that the fiber products coated with the silica hybrid silver nanoparticles can be used to inhibit the growth of various microorganisms.