원자력시설에서 방사성요오드 제거용으로 사용되는 TEDA 침착활성탄의 고온공정에서의 메틸요오드의 제거성능을 은이온제올라이트(AgX)와 상호 비교하였다. $30^{\circ}C~400^{\circ}C$ 온도범위에서 온도에 따른 메틸요오드의 흡착량 및 탈착후 잔존량을 측정한 결과, 비첨착활성탄의 흡착성능은 온도가 증가함에 따라 급격히 감소하지만 TEDA 침착활성탄의 흡착성능은 $100^{\circ}C$부근에서도 AgX와 거의 유사한 값을 나타내었고, 탈착후 잔존량은 $250^{\circ}C$까지도 비침착활성탄에 비하여 매우 높은 값을 유지하였다. 또한 $100^{\circ}C$ 이상의 고온공정에서 AgX 및 TEDA 침착활성탄을 충전한 고정층 파괴특성을 상호 비교하였으며, 반응 생성기체의 분석으로부터 AgX에 의한 메틸요오드 제거 메커니즘을 제안하였다.
The structure of $CS_{7.3}Ag_{4.7}Si_{12}Al_{12}O_{48}$, vacuum dehydrated zeolite A with all Na+ ions replaced by $Cs^+$ and $Ag^+$ as indicated, has been determined by single-crystal x-ray diffraction techniques in the cubic space group, Pm3m (a = 12.282 (1) ${\AA}$). The structure was refined to the final error indices $R_1$$R_2$ (weighted) = 0.099 using 347 independent reflections for whind intlch $I_0\;>\;3{\sigma}(I_0)$. Although deydration occurred at $360^{\circ}C$, no silver atoms or clusters have been observed. The 8-ring sites are occupied only by $Cs^+$ ion, and the 4-ring sites only by a single $Ag^+$ ion. The 6-ring sites contain $Ag^+$ and $Cs^+$ ions with $Ag^+$ nearly in 6-ring planes and $Cs^+$ well off them, one on the sodalite unit side. With regard to the 6-rings, the structure can be represented as a superposition of two types of unit cells: about 70 % have $4Ag^+$ and $4Cs^+$ ions, and the remaining 30 % have $3Ag^+$ and $5Cs^+$. In all unit cells, $3Cs^+$ ions lie at the centers of the 8-rings at sites of D4h symmetry; these ions are approximately 0.3 ${\AA}$ further from their nearest framework-oxygen neighbors than the sum of the appropriate ionic radii would indicate. To minimize electrostatic repulsions, the $Cs^+$ ions at Cs(1) are not likely to occupy adjacent 6-rings in the large cavity; they are likely to be tetrahedrally arranged when there are 4.
Kim, Yang;Song, Seong-Hwan;Park, Jong-Yul;Kim, Un-Sik
Bulletin of the Korean Chemical Society
/
제9권6호
/
pp.338-341
/
1988
Two crystal structures of fully dehydrated silver and potassium exchanged zeolite A, stoichiometries of $Ag_{9.3}K_{{2.7}^-}A$ (${\alpha}$ = 12.282(2) ${\AA}$) and $Ag_{10.7}K_{{1.3}^-}{\AA}$ (${\alpha}$ = 12.287(2) A) per unit cell, have been determined from 3-dimensional x-ray diffraction data gathered by counter methods. All structures were solved and refined in the cubic space group Pm3m at 21(1)$^{\circ}C$ . The crystals of $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were prepared by flow method using exchange solutions in which mole ratios of $AgNO_3$ and $KNO_3$ were 1:10 and 1:5, respectively, with total concentration of 0.05M. The structures of the dehydrated $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$ were refined to yield the final error indices $R_1$ = 0.037 and $R_2$ = 0.040 with 321 reflections, and $R_1$ = 0.042 and $R_2$ = 0.043 with 371 reflections, repectively, for which I > 3${\sigma}$(I). In both structures, eight $Ag^+$ ions are found nearly at 6-ring centers and each $Ag^+$ ion is nearly in the (1 1 1) plane at its O(3) ligands. The 8-ring sites are preferentially occupied by $K^+$ ions in both structures. 1.3 and 1.7 reduced silver atoms per unit cell were found inside of sodalite units of $Ag_{9.3}K_{{2.7}^-}A$ and that of $Ag_{10.7}K_{{1.3}^-}A$, respectively. These reduced silver species were presumably formed from the reduction of $Ag^+$ ions by oxide ions of residual water molecule or of the zeolite framework. These two crystals may be presented as hexasilver cluster in 21.7% and 28.3% of sodalite unit cells for $Ag_{9.3}K_{{2.7}^-}A$ and $Ag_{10.7}K_{{1.3}^-}A$, repectively.
$Ag^+$ 이온으로 완전히 치환되고 탈수된 두개의 제올라이트 X의 구조(a=24.922${\AA}$, a=24.901(1)${\AA}$)를 21$^{\circ}C$에서 입방공간군 Fd3을 사용하여 단결정 X-선 회절법으로 해석하고 구조를 정밀화하였다. 결정은 $AgNO_3$의 수용액을 사용하여 3일간 흐름법으로 이온 교환하였다. 첫번째 결정은 300$^{\circ}C$에서 $2{\times}10^{-6$torr하에서 2일간 진공 탈수하였다. 두번째 결정은 350$^{\circ}C$에서 진공 탈수하였다. 첫번째 구조는 Full-matrix 최소자승법 정밀화 계산에서 I>3${\sigma}$(I)인 227개의 독립 반사를 사용하여 최종 오차 인자를 $R_1=0.095,\;R_2=0.092$까지 정밀화 계산하였고, 두번째 구조는 334개의 독립 반사를 사용하여 $R_1=0.096,\;R_2=0.087$까지 정밀화시켰다. 첫번째 결정에서 Ag는 서로 다른 5개의 결정학적 자리에 위치하였다. 16개의 $Ag^-$이온은 D6R의 중심에 있는 자리 I를 채우면서 위치하고, 32개의 Ag원자는 D6R의 맞은편에 있는 소다라이트 공동에 있는 자리 I'에 위치하였고, 17개의 $Ag^+$ 이온은 큰 공동에 있는 6-산소 링에서 소다라이트 공동 내의 32-중축을 가진 II'에 위치하고, 15개의 $Ag^+$ 이온은 큰 공동에 32-중축을 가진 II에 위치하고, 나마지 12개의 $Ag^+$이온은 2중축을 약간 벗어난 큰 공동에 있는 III'에 위치하였다. 두번째 결정에서 모든 Ag종은 첫번째 결정과 유사한 자리에 있었다. 자리 I에 16개, 자리 I'에 28개, 자리 II에 16개, 자리 II'에 16개, 자리 III에 6개 또 다른 III'에 6개 모두 88개의 Ag종이 위치하였고 4개의 Ag원자는 탈수중에 골조 밖으로 이동하였다. 이들 결정에서 Ag원자는 소다라이트 공동의 중심에서 사면체의 $Ag_4$ 클라스터를 형성하였다. 이 클라스터는 2개의 $Ag^+$이온과 배위하여 안정화 된다. 클라스터에서 Ag-Ag 거리는 약 3.05.angs.이고 은금속에서 Ag-Ag 거리인 2.89.angs.보다 약간 길었다. 소다라이트 공동에 위치한 자리II에서 적어도 2개의 6-링에 위치한 $Ag^+$이온은 클라스터에 반드시 배위하며, 뒤틀린 팔면체 은 클라스터인($Ag_6)^{2+}$)로 존재한다.
고농도의 1-부텐을 생산하기 위하여 흡착 분리제의 개발이 필수적인데, 본 연구에서는 메조포러스 실리케이트인 MCM-41을 지지체로 하여 $AgNO_3$를 함침시켜 흡착제를 제조한 후, 1-부텐과 n-부탄의 흡착 특성을 연구하였다. 또한, 열처리 조건에 따른 $Ag^+$ 이온의 형성 비율과 1-부텐의 결합 능력을 알아보았다. MCM-41 흡착제의 경우, 13X 제올라 이트에 비하여 매우 높은 흡착량을 보여주었으며, 은이 담지되었을 때, n-부탄의 흡착량은 감소하는 반면에 1-부텐의 흡착량은 증가함으로써 1-부텐과 n-부탄의 흡착 분리에 매우 좋은 성능을 갖음을 확인할 수 있었다. 또한, 진공 분위기에서 373 K로 열처리한 Ag/MCM-41의 경우 가장 높은 1-부텐/n-부탄 흡착비를 보였으며, 특히 저압에서 매우 높은흡착비를 보여주었다.
The crystal structure of dehydrated $Ag_{5.6}K_{6.4}-A$, zeolite A ion-exchanged with $K^+\;and\;Ag^+$ as indicated and dehydrated at 360$^{\circ}$C, has been determined by single-crystal X-ray diffraction techniques. Also determined were the structures of the products of the reactions of this zeolite with 0.1 Torr of Cs vapor at 250$^{\circ}$C for 48 h and 72 h, and with 0.1 Torr of Rb vapor at 250$^{\circ}$C for 24 h. The structures were solved and refined in the cubic space group Pm3m at 21(l)$^{\circ}$C (a= 12.255(l) ${\AA}$ , 12.367(l) ${\AA}$, 12.350(l) ${\AA}$, and 12.263(l) ${\AA}$, respectively). Dehydrated $Ag_{5.6}K_{6.4}$-A was refined to the final error indices $R_1= 0.044\;and\;R_2=0.037$ with 202 reflections for which I>3${\sigma}$(I). The crystal structures of the reaction products were refined to $R_1=0.087\;and\;R_2= 0.089$ with 157 reflections, $R_1=0.080\;and\;R_2= 0.087$ with 161 reflections, and $R_1= 0.071\;and\;R_2=0.061$ with 88 reflections, respectively. In the structure of $Ag_{5.6}K_{6.4}-A,\;K^+$ ions block all 8-oxygen rings, and one reduced Ag atom is found per sodalite cavity. Also, ca. 4.6 $Ag^+ ions\;and\;3.4 K^+ ions$ are found at 6-ring sites in the large cavity. The crystal structures of the reaction products show that all $K^+$ and $Ag^+$ ions have been reduced, and that all K^+$ atoms have left the zeolite. Cs or Rb species are found at three different crystallographic sites: 3.0 $Cs^+\;or\;3.0Rb^+$ ions per unit cell occupy 8-ring centers, ca. 8.0 $Cs^+ ions\;or\;5.7 Rb^+$ ions, are found on threefold axes opposite 6-rings deep in the large cavity, and ca. 2.5 $Cs^+\;or\;2.3 Rb^+ ions are found on threefold axes in the sodalite unit. Also, 1 $Rb^+$ ion lies opposite a 4-ring. Silver atoms, corresponding to 75% or 40% occupancy of hexasilver clusters stabilized by coordination to $Cs^+\;or\;Rb^+$ ions, are found at the centers of the large cavities. In the crystal structures of dehydrated Ag_{5.6}K_{6.4}-A$ reacted with Cs vapor, excess Cs atoms are absorbed and these form (locally) cationic clusters such as $(Cs_4)3^+\;and\;(Cs_6)4^+$.
원자력시설에서 방사성요오드 제거용으로 사용되는 TEDA 첨착활성탄의 고온공정에서치 메틸요오드의 제거성능을 은이온제올라이트(AgX)와 상호 비교하였다. 3$0^{\circ}C$-40$0^{\circ}C$ 온도범위에서 온도에 따른 메틸요오드의 흡착량 및 탈착후 잔존량을 측정한 결과, 비첨착활성탄의 흡착성능은 온도가 증가함에 따라 급격히 감소하지만 TEDA 첨착활성탄의 흡착성능은 10$0^{\circ}C$ 부근에서도 AgX-10과 거의 유사한 값을 나타내었고, 탈착후 잔존량은 25$0^{\circ}C$ 까지도 비첨착활성탄에 비하여 매우 높은 값을 유지하였다. 또한 10$0^{\circ}C$ 이상의 고온공정에서 AgX 및 TEDA 첨착활성탄을 충전한 고정층 파과특성을 상호 비교한 결과 10$0^{\circ}C$ 이상에서 AgX-10의 메틸요오드 흡착량 및 잔존량은 TEDA 첨착활성탄에 비하여 평균 30%정도 높은 값을 나타내어 고온에서 더 흡착성능이 우수함을 보여주고 있다. 흡착반응 후 생성된 기체의 성분을 분석한 결과를 토대로 AgX-10 흡착제를 충전한 고정층에서 메틸요오드 제거 메카니즘을 제안하였다.
은 이온이 불포화 지방산과의 착화합물을 만든다는 이론에 근거하여 은 이온 교환수지(SER)를 제조하였다. 제조한 SER을 비롯하여 silica gel, 질산은 함침 silica gel, 은 이온 제올라이트를 column 충전물로 사용하여 EPA와 DHA를 분리 농축하고 그 결과를 비교 분석하였다. SER과 silica gel의 9 : 1(w/w)혼합물을 충전물로 사용하였을 때 결과가 가장 좋았으며 이 경우 EPA와 DHA는 각각 27.9%와 49.1%로 농축되었고 수율은 각각 86.0%, 87.3%로 나타났다. SER만을 사용한 경우 EPA와 DHA는 각각 23.5%와 42.1%로 농축되었으며 이는 SER과 silica gel의 혼합 충전물 사용 시 보다 다소 낮은 결과이었다. 질산은 함침 silica gel의 경우 다른 충전물과 비교하여 농축율과 수율이 그다지 좋지 않았으나 EPA와 DHA의 분리 측면에서는 가장 우수한 결과를 나타내었다. SER은 재사용이 가능하고, 사용한 은 이온수지 자체도 쉽게 재생할 수 있을 뿐 아니라 사용한 은 이온도 AgCl 침전이나 $AgNO_3$로 회수가 용이하다는 점에서 다른 농축과정과 비교하여 훨씬 경제적이라 할 수 있다.
Ag+ 이온과 Ca2+ 이온으로 교환하고 진공 탈수한 제올라이트 A에 요오드를 흡착한 결정 구조(a=12.174(3)Å)를 21℃에서 입방공간군 Pm3m을 사용하여 단결정 X-선 회절법으로 구조를 해석하였다. 결정은 AgNO3와 Ca(NO3)2의 몰비를 1:150으로 하고 농도를 0.05 M로 한 혼합용액을 사용해 흐름법으로 3일간 이온교환한 후 360℃에서 2×10-6 Torr하에서 2일간 진공탈수한 후 80℃에서 14.3 Torr의 요오드 증기로 24시간 처리하였다. 결정구조는 Full-matrix 정밀화 계산에서 I > 3σ(I)인 122개의 독립 반사를 사용하여 최종 오차 지수 R1=0.082, R2=0.068까지 정밀화시켰다. 본 결정 구조에는 단위세포당 결정학적으로 세 가지의 다른 종류의 양이온 즉 2개의 Ag+ 이온, 1.1 개의 Ag+ 이온 그리고 4.45개의 Ca2+이온이 6-링의 산소와 결합하면서 각각 서로 다른 3회 회전축 상에 위치하고 있었다. 2.0개의 Ag+ 이온이 3개의 산소로 만들어지는 (111) 평면으로부터 큰 동공쪽으로 1.399(4)Å 떨어져 위치하고 있었다. 또 다른 1.1 개의 Ag+이온은 반대쪽에서 발견되었다. 여섯 분자의 요오드 분자가 흡착되었다. 각 요오드 분자는 골조 산소와 전하이동 착물을 형성하였다. (O-I=3.43(2)Å, I-I=2.92Å, I-I-O;166.1(3)°). 이중 2개의 요오드 분자는 각각 하나의 Ag+ 이온과 매우 가깝게 결합하고 있음을 알 수 있었다(Ag-I;2.73Å).
X-선 단결정법으로 탈수한 $Ag_{9}Rb_{3}-A$ (a = 12.278(2)${\AA}$) 와 $Ag_{10}Rb_{2}-A$ (a = 12.286(2)${\AA}$)의 구조를 입방공간군 Pm3m을 써서 해석하였다. $Ag_{9}Rb_{3}-A$의 구조는 I >3${\sigma}$(I)인 회절반점 291개를 이용하여 $R_1$ = 0.064, $R_2$ = 0.060까지 정밀화 시켰으며 $Ag_{10}Rb_{2}-A$의 구조는 416개의 회절반점을 이용하여 $R_1$ = 0.063, $R_2$ = 0.080까지 정밀화 시켰다. 두 구조 모두 단위세포당 하나의 환원된 은 원자가 소다라이트 동공 내에 있으며 이 환원된 은 원자는 소다라이트 동공 1/6개 마다 $Ag_6$로 존재하든가 혹은 모든 소다라이트 동공마다 4mm 대칭성을 가지는 $(Ag_5)^{4+}$ 클러스터로 존재한다. 그 밖에 탈수한 $Ag_{9}Rb_{3}-A$에서는 8개의 $Ag^+$이온은 6-링 중심 3회 회전축 상에 있으며 3개의 $Rb^+$이온은 8-링 중심 $D_{4h}$ 대칭성을 가지고서 위치하고 있다. 또 탈수한 $Ag_{10}Rb_{2}-A$구조에서는 2개의 다른 6-링 $Ag^+$ 이온 즉 7개의 $Ag^+$ 이온은 6-링 평면상에 위치하고 1개의 $Ag^+$이온은 소다라이트 동공 내에 위치한다. 두 개의 서로 다른 8-링 양이온이 있으며 두 개의 $Rb^+$이온은 8-링 중심에 위치하였고 1개의 $Ag^+$이온은 8-링에서 0.1$\AA$ 만큼 큰 동공 쪽으로 이동하여 위치한다. 두 구조에서 보면 $Ag^+$이온은 6-링 위치에 $Rb^+$ 이온은 8-링 위치에 우선적으로 위치한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.